【題目】已知函數(shù).
若在其定義域上單調(diào)遞減,求的取值范圍;
若存在兩個不同極值點與,且,求證.
【答案】(1)(2)見解析
【解析】
先對函數(shù)求導,由在其定義域上單調(diào)遞減,得到恒成立,即恒成立,用導數(shù)的方法求出的最小值即可;
(2)若存在兩個不同極值點與,且,欲證:,只需證:,即證,再根據(jù),得到,,再令,得到,設,由導數(shù)方法研究其單調(diào)性即可得出結論.
解:(1)由于的定義域為,且,若在其定義域上單調(diào)遞減,則恒成立,即恒成立.
令,
則隨著的變化,與的變化如下表所示
- | 0 | + | |
↘ | 極小值 | ↗ |
所以.
所以
(2)若存在兩個不同極值點與,且,
欲證:.
只需證:.
只需證:.
只需證:.
因為,,,,
所以,
所以
令,則,則,
設,則,
可知函數(shù)在上單調(diào)遞增
所以 .
所以成立.
科目:高中數(shù)學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經(jīng)人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是兩條異面直線,直線與都垂直,則下列說法正確的是( )
A. 若平面,則
B. 若平面,則,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長為1的菱形,,面,,、分別為、的中點.
(1)證明:直線平面;
(2)求異面直線與所成角的大小;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是__________________.
①命題“若x2-3x+2=0,則x=1”的逆否命題為:若x≠1,則x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對于命題p:x∈R,使得x2+x+1<0,則非p:x∈R, 均有x2+x+1≥0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點.
(1)若平面平面,求的長;
(2)是否存在點,使直線與平面所成的角是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com