若曲線y=xα+1(α∈R)在點(diǎn)(1,2)處的切線經(jīng)過坐標(biāo)原點(diǎn),則α=    . 

 

【答案】

2

【解析】切線的斜率為k=2,

又因y=αxα-1,

k=α,所以α=2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江西)若曲線y=xα+1(α∈R)在點(diǎn)(1,2)處的切線經(jīng)過坐標(biāo)原點(diǎn),則α=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求出其坐標(biāo);若曲線y=x+
p
x
(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西 題型:填空題

若曲線y=xα+1(α∈R)在點(diǎn)(1,2)處的切線經(jīng)過坐標(biāo)原點(diǎn),則α=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

若曲線y=xα+1(α∈R)在點(diǎn)(1,2)處的切線經(jīng)過坐標(biāo)原點(diǎn),則α=   

查看答案和解析>>

同步練習(xí)冊(cè)答案