下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞減,并且是偶函數(shù)的是(  )
A、y=x2B、y=x+1C、y=-lg|x|D、y=2x
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別根據(jù)函數(shù)單調(diào)性和奇偶性的性質(zhì)進(jìn)行判斷即可.
解答:解:A.y=x2在(0,+∞)內(nèi)單調(diào)遞增,是偶函數(shù),不滿足條件,故A不選;
B.y=x+1在(0,+∞)內(nèi)單調(diào)遞增,不是偶函數(shù),不滿足條件,故B不選;
C.y=-lg|x|在(0,+∞)內(nèi)單調(diào)遞減,是偶函數(shù),滿足條件,故C選;
D.y=2x在(0,+∞)內(nèi)單調(diào)遞增,不是偶函數(shù),不滿足條件,故D不選,
故選:C.
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見函數(shù)的奇偶性和單調(diào)性的性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,
1
2
},集合B={y|y=x2,x∈A},則A∩B=( 。
A、{
1
2
}
B、{2}
C、{1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A是函數(shù)f(x)=ln(x2-2x)的定義域,集合B={x|x2-5>0},則(  )
A、A∩B=∅B、A∪B=RC、B⊆AD、A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x-1(x≥0)
1
x
(x<0)
,若f(f(a))=-
1
2
,則實數(shù)a=(  )
A、4
B、-2
C、4或-
1
2
D、4或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(x2-4)的單調(diào)遞增區(qū)間為( 。
A、(0,+∞)
B、(-∞,0)
C、(2,+∞)
D、(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈(0,1),a=2x,b=x 
1
2
,c=lgx,則下列結(jié)論正確的是( 。
A、b<c<a
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log212-log23=(  )
A、2
B、0
C、
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“*”:a*b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=(x2+1)*(x+2),若函數(shù)y=f(x)-c的圖象與x軸恰有兩個公共點,則實數(shù)C的取值范圍是( 。
A、(2,4)∪(5,+∞)
B、(1,2]∪(4,5]
C、(-∞,1)∪(4,5]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
log2x,x>0
4x,x≤0
,則f[f(-1)]
 
;若函數(shù)g(x)=f(x)-k存在兩個零點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案