分析 求出橢圓的焦點(diǎn)坐標(biāo),可得雙曲線的焦點(diǎn)坐標(biāo),根據(jù)雙曲線的一條漸近線方程為$x+\sqrt{3}y=0$,設(shè)雙曲線的方程為x2-3y2=λ,即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}$=1,可得λ+$\frac{1}{3}$λ=48,即可求出雙曲線的方程.
解答 解:橢圓x2+4y2=64的焦點(diǎn)坐標(biāo)為(±4$\sqrt{3}$,0),
∴雙曲線的焦點(diǎn)坐標(biāo)為(±4$\sqrt{3}$,0),
∵雙曲線的一條漸近線方程為$x+\sqrt{3}y=0$,
∴設(shè)雙曲線的方程為x2-3y2=λ,
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}$=1
∴λ+$\frac{1}{3}$λ=48,
∴λ=36,
∴雙曲線的方程為$\frac{x^2}{36}-\frac{y^2}{12}=1$.
點(diǎn)評 本題考查雙曲線的方程,考查橢圓、雙曲線的幾何性質(zhì),考查學(xué)生的計(jì)算能力,確定雙曲線的焦點(diǎn)坐標(biāo)是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價(jià)格 | 14 | 16 | 18 | 20 | 22 |
需求量 | 12 | 10 | 12 | 5 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com