6.已知函數(shù)f(x)=x5-m是定義在[-3-m,7-m]上的奇函數(shù),則f(m)=8.

分析 根據(jù)奇函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱,可得m的值,代入可得答案.

解答 解:∵函數(shù)f(x)=x5-m是定義在[-3-m,7-m]上的奇函數(shù),
∴(-3-m)+(7-m)=0,
解得:m=2,
故f(x)=x3
故f(m)=f(2)=8,
故答案為:8.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(2x+1)=x2-2x-5,則f(x)的解析式為(  )
A.f(x)=4x2-6B.f(x)=$\frac{1}{4}{x}^{2}-\frac{3}{2}x-\frac{15}{4}$
C.f(x)=$\frac{1}{4}{x}^{2}+\frac{3}{2}x-\frac{15}{4}$D.f(x)=x2-2x-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=2x+3x-8,則方程f(x)=0的根落在區(qū)間(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={x|x>-1},則(  )
A.∅∈AB.0∈AC.-1∈AD.{-1}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線$\frac{x^2}{64}-\frac{y^2}{36}$=1上一點(diǎn)P到它的左焦點(diǎn)的距離為18,則點(diǎn)P到右焦點(diǎn)的距離為(  )
A.2B.34C.6D.2或34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex,x∈R.
(1)若直線y=kx與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(2)若m<0,討論函數(shù)g(x)=f(x)+mx2零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px的準(zhǔn)線方程是x=-2,則p的值是(  )
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若雙曲線C與橢圓x2+4y2=64有相同的焦點(diǎn),它的一條漸近線方程是$x+\sqrt{3}y=0$,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n項(xiàng)和Tn
(Ⅲ)數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=3.若不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$對(duì)任意n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案