已知橢圓的離心率為,且過點(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
(1)(2)面積取最大值1,=
【解析】
試題分析:(Ⅰ)∵
故所求橢圓為:又橢圓過點() ∴ ∴ ∴
(Ⅱ)設(shè)的中點為
將直線與聯(lián)立得,
①
又=
又(-1,0)不在橢圓上,依題意有整理得 ②…
由①②可得,∵, 設(shè)O到直線的距離為,則
=
=…分)
當(dāng)的面積取最大值1,此時= ∴直線方程為=
考點:橢圓的方程性質(zhì)及直線與橢圓的位置關(guān)系
點評:直線與橢圓相交時常聯(lián)立方程,利用韋達定理設(shè)而不求的方程轉(zhuǎn)化求解出弦長,本題求解三角型面積最值轉(zhuǎn)化成二次函數(shù),有時利用均值不等式求最值,此題中第二小題屬于難題
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com