13.設(shè)Sn為數(shù)列{an}的前項(xiàng)和,已知a1≠0,2an-a1=S1•Sn,n∈N+
(1)求a1,并求證數(shù)列{an}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和.

分析 (1)S1=a1≠0,當(dāng)n=1時(shí),2a1-a1=a1•a1,解得a1,n≥2時(shí),an=Sn-Sn-1=2an-1,即可證明.
(2)an=2n-1.nan=n•2n-1.利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)∵S1=a1≠0,∴當(dāng)n=1時(shí),2a1-a1=a1•a1,解得a1=1,
下面證明:數(shù)列{an}為等比數(shù)列.n≥2時(shí),an=Sn-Sn-1=$\frac{2{a}_{n}-{a}_{1}}{{S}_{1}}$-$\frac{2{a}_{n-1}-{a}_{1}}{{S}_{1}}$,化為:an=2an-1
∴數(shù)列{an}為等比數(shù)列,公比為2,首項(xiàng)為1.
(2)an=2n-1
nan=n•2n-1
∴數(shù)列{nan}的前n項(xiàng)和Tn=1+2×2+3×22+…+n•2n-1,
∴2Tn=2+2×22+…+(n-1)•2n-1+n•2n
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{{2}^{n}-1}{2-1}$-n•2n,
∴Tn=(n-1)•2n+1.

點(diǎn)評 本題考查了“錯位相減法”、等比數(shù)列的定義與通項(xiàng)公式求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>b>0,則下列不等式一定成立的是(  )
A.$a+\frac{1}>b+\frac{1}{a}$B.$\frac{a}>\frac{b+1}{a+1}$C.$a-\frac{1}>b-\frac{1}{a}$D.$\frac{2a+b}{a+2b}>\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x+ax2+bcosx函數(shù)在點(diǎn)$({\frac{π}{2},f({\frac{π}{2}})})$處的切線為y=$\frac{3π}{4}$.
(1)求函數(shù)a,b的值,并求出f(x)在[0,π]上的單調(diào)區(qū)間;
(2)若f(x1)=f(x2),且0<x1<x2<π,求證:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$則sin2x等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,且2acosB=3ccosA-2bcosA.
(1)若b=$\sqrt{5}$sinB,求a;
(2)若a=$\sqrt{6}$,△ABC的面積為$\frac{\sqrt{5}}{2}$,求b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$則z=-$\frac{5}{4x+3y}$的最大值為( 。
A.-$\frac{15}{8}$B.-$\frac{5}{4}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為推行“新課堂”教學(xué)法,某化學(xué)老師分別用原傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖.記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100)
甲班頻數(shù)56441
乙班頻數(shù)13655
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“成
績優(yōu)良與教學(xué)方式有關(guān)”?
 甲班乙班總計(jì)
成績優(yōu)良   
成績不優(yōu)良   
總計(jì)   
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
獨(dú)立性檢驗(yàn)臨界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法來抽取8人進(jìn)行考核,在這8 人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足條件$\left\{\begin{array}{l}x-y≤2\\ x+y≥2\\ y≤2\end{array}$,則z=$\frac{y-x}{x-6}$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

同步練習(xí)冊答案