在正三棱錐S-ABC中,M為棱SC上異于端點的點,且SB⊥AM,若側棱SA=數(shù)學公式,則正三棱錐S-ABC的外接球的表面積是________.


分析:根據(jù)三棱錐為正三棱錐,可證明出AC⊥SB,結合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三條側棱兩兩互相垂直.最后利用公式求出外接圓的直徑,結合球的表面積公式,可得正三棱錐S-ABC的外接球的表面積.
解答:取AC中點,連接BN、SN
∵N為AC中點,SA=SC
∴AC⊥SN,同理AC⊥BN,
∵SN∩BN=N
∴AC⊥平面SBN
∵SB?平面SBN
∴AC⊥SB
∵SB⊥AM且AC∩AM=A
∴SB⊥平面SAC?SB⊥SA且SB⊥AC
∵三棱錐S-ABC是正三棱錐
∴SA、SB、SC三條側棱兩兩互相垂直.
∵側棱SA=,
∴正三棱錐S-ABC的外接球的直徑為:
外接球的半徑為R=
∴正三棱錐S-ABC的外接球的表面積是S=4πR2=9π
故答案為9π
點評:本題以正三棱錐中的垂直關系為例,考查了空間線面垂直的判定與性質,以及球內接多面體等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正三棱錐S-ABC中,M、N分別為棱SC、BC的中點,并且AM⊥MN,若側棱長SA=
3
,則正三棱錐S-ABC的外接球的表面積為(  )
A、9πB、12π
C、16πD、32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,若SA=4,BC=3,分別取SA、BC的中點E、F,則EF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,D是AB的中點,且SD與BC成45°角,則SD與底面ABC所成角的正弦為( 。
A、
2
2
B、
1
3
C、
3
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)在正三棱錐S-ABC中,M為棱SC上異于端點的點,且SB⊥AM,若側棱SA=
3
,則正三棱錐S-ABC的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,側棱SC⊥側面SAB,側棱SC=2
3
,則此正三棱錐的外接球的表面積為
36π
36π

查看答案和解析>>

同步練習冊答案