【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們]對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持“延遲退休”的人數(shù)

15

5

15

28

17

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)

(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人

①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

【答案】(1)能(2)①②見解析

【解析】分析:(1)由統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;
(2)①求抽到1人是45歲以下的概率,再求抽到1人是45歲以上的概率,
②根據(jù)題意知的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫出隨機(jī)變量的分布列,計(jì)算數(shù)學(xué)期望值.

詳解:(1)由頻率分布直方圖知45歲以下與45歲以上各50人,故填充列聯(lián)表如下:

45歲以下

45歲以上

總計(jì)

支持

35

45

80

不支持

15

5

20

總計(jì)

50

50

100

因?yàn)?/span>的觀測(cè)值,

所以在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異.

(2)①抽到1人是45歲以下的概率為,抽到1人是45歲以下且另一人是45歲以上的概率為,故所求概率.

②從不支持“延遲退休”的人中抽取8人,則45歲以下的應(yīng)抽6人,45歲以上的應(yīng)抽2人.所以的可能取值為0,1,2.

,,.

故隨機(jī)變量的分布列為:

0

1

2

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為F1,0),E是拋物線的準(zhǔn)線與x軸的交點(diǎn),直線AB經(jīng)過(guò)焦點(diǎn)F且與拋物線交于A,B兩點(diǎn),直線AEBE分別交y軸于M,N兩點(diǎn),記,的面積分別為

1)求拋物線C的標(biāo)準(zhǔn)方程;

2是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由;

3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程.

2)若對(duì)任意的恒成立,求的值.

3)在(2)的條件下,記,證明:存在唯一的極大值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.

1)求拋物線的方程;

2)若過(guò)點(diǎn)作互相垂直的兩條直線,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.

1)求拋物線的方程;

2)若過(guò)點(diǎn)作互相垂直的兩條直線,,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)式過(guò)馬路存在很大的交通安全隱患,某調(diào)查機(jī)構(gòu)為了解路人對(duì)中國(guó)式過(guò)馬路的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如圖的列聯(lián)表.已知在這30人中隨機(jī)抽取1人抽到反感中國(guó)式過(guò)馬路的路人的概率是

1)求列聯(lián)表中的,的值;

男性

女性

合計(jì)

反感

10

不反感

8

合計(jì)

30

2)根據(jù)列聯(lián)表中的數(shù)據(jù),判斷是否有95%把握認(rèn)為反感中國(guó)式過(guò)馬路與性別有關(guān)?

臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案