【題目】設(shè)函數(shù),曲線在點處的切線方程為.

(Ⅰ)求實數(shù), 的值;

(Ⅱ)若 , , ,試判斷, , 三者是否有確定的大小關(guān)系,并說明理由.

【答案】(Ⅰ) , ;(Ⅱ) ;理由見解析.

【解析】試題分析:

() 由題意可得,求解可得結(jié)論;

(Ⅱ) (),(i) ,利用對數(shù)的運算性質(zhì)與基本不等式求解可得結(jié)論; (ii) , 設(shè)函數(shù), ,求導(dǎo)并判斷函數(shù)的單調(diào)性,易得結(jié)論; (iii) , 設(shè), ,同理求解即可.

試題解析:

(Ⅰ) .

由于所以, .

(Ⅱ)由(Ⅰ)知.

(i) ,

,故

(ii) =.

設(shè)函數(shù), ,

.

當(dāng)時, ,所以上單調(diào)遞增;

,因此上單調(diào)遞增.

,所以,即,即

(iii) =.

設(shè), .

,有.

當(dāng)時, ,所以上單調(diào)遞增,有.

所以上單調(diào)遞增.

,所以,即,故

綜上可知:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,

(1)求異面直線BF與DE所成的角的大。
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a>0)在x=1處有極值10.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,E、F分別是AA1、AB的中點,則EF與對角面A1C1CA所成角的度數(shù)是(
A.30°
B.45°
C.60°
D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,頂點為,且

(1)求橢圓的方程;

(2)是橢圓上除頂點外的任意點,直線軸于點,直線于點.設(shè)的斜率為, 的斜率為,試問是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1和雙曲線C2焦點相同,且離心率互為倒數(shù),F(xiàn)1 , F2它們的公共焦點,P是橢圓和雙曲線在第一象限的交點,當(dāng)∠F1PF2=60°時,則橢圓C1的離心率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線相交于不同兩點,與圓相切于點,且為線段中點

(1)是正三角形(是坐標(biāo)原點),求此三角形的邊長;

(2) 若,求直線的方程;

(3)進行討論,請你寫出符合條件的直線數(shù)(直接寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級從甲(文)、乙(理)兩個科組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是85,乙組學(xué)生成績的中位數(shù)是83.

(1)求x和y的值;
(2)計算甲組7位學(xué)生成績的方差S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù) (其中e為自然對數(shù)的底數(shù)),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),.已知直線是曲線的切線,且函數(shù)上是增函數(shù).

(i)求實數(shù)的值;

(ii)求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案