【題目】設(shè)是兩條不同的直線, 是兩個(gè)不同的平面,則下列命題中正確的是( )
A. 若, ,則
B. 若, ,則
C. 若, , ,則
D. 若,且,點(diǎn),直線,則
【答案】C
【解析】A. 若, ,則或;
B. 若, ,則無(wú)交點(diǎn),即平行或異面;
C. 若, , ,過(guò)作平面與分別交于直線s,t,則, ,所以t,再根據(jù)線面平行判定定理得,因?yàn)?/span>, ,所以,即
D. 若,且,點(diǎn),直線,當(dāng)B在平面內(nèi)時(shí)才有,
綜上選C.
【題型】單選題
【結(jié)束】
11
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說(shuō):“乙或丙未獲獎(jiǎng)”;乙說(shuō):“甲、丙都獲獎(jiǎng)”;丙說(shuō):“我未獲獎(jiǎng)”;丁說(shuō):“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )
A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)
C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
(3)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,新冠肺炎疫情襲擊全國(guó),對(duì)人民生命安全和生產(chǎn)生活造成嚴(yán)重影響.在黨和政府強(qiáng)有力的抗疫領(lǐng)導(dǎo)下,我國(guó)控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟(jì)下降對(duì)企業(yè)和民眾帶來(lái)的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元()滿足(為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是2萬(wàn)件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)一萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來(lái)計(jì)算)
(1)將2020年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷費(fèi)用萬(wàn)元的函數(shù);
(2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)都是正數(shù)的等比數(shù)列{},Sn為前n項(xiàng)和,且S10=10,S30=70,那么S40=______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
【答案】B
【解析】幾何體如圖,球心為O,半徑為,表面積為,選B.
點(diǎn)睛:涉及球與棱柱、棱錐的切、接問(wèn)題時(shí),一般過(guò)球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.
【題型】單選題
【結(jié)束】
9
【題目】是雙曲線的左右焦點(diǎn),過(guò)且斜率為1的直線與兩條漸近線分別交于兩點(diǎn),若,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說(shuō)“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: , ,
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)
(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
【答案】(1)答案見解析;(2) ;(3)中度高血壓人群.
【解析】試題分析:(1)將數(shù)據(jù)對(duì)應(yīng)描點(diǎn),即得散點(diǎn)圖,(2)先求均值,再代人公式求,利用求,(3)根據(jù)回歸直線方程求自變量為180時(shí)對(duì)應(yīng)函數(shù)值,再求與標(biāo)準(zhǔn)值的倍數(shù),確定所屬人群.
試題解析:(1)
(2)
∴
∴回歸直線方程為.
(3)根據(jù)回歸直線方程的預(yù)測(cè),年齡為70歲的老人標(biāo)準(zhǔn)收縮壓約為(mmHg)∵
∴收縮壓為180mmHg的70歲老人為中度高血壓人群.
【題型】解答題
【結(jié)束】
19
【題目】如圖,四棱柱的底面為菱形, , , 為中點(diǎn).
(1)求證: 平面;
(2)若底面,且直線與平面所成線面角的正弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量,,函數(shù).
(1)求的最小正周期及圖象的對(duì)稱軸方程;
(2)若先將的圖象上每個(gè)點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,然后再向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,求函數(shù)在區(qū)間內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com