在等差數(shù)列{an}中,a1+a2+a3=3,a28+a29+a30=165,則此數(shù)列前30項和等于
840
840
分析:在等差數(shù)列{an}中,由a1+a2+a3=3,a28+a29+a30=165,知a2+a29=56,再由S30=
30
2
(a1+a30)

=15(a2+a29),能求出此數(shù)列前30項和.
解答:解:在等差數(shù)列{an}中,
∵a1+a2+a3=3,a28+a29+a30=165,
3a2=3
3a29=165
,
解得a2+a29=56,
∴此數(shù)列前30項和:
S30=
30
2
(a1+a30)

=15(a2+a29
=15×56
=840.
故答案為:840.
點評:本題考查等差數(shù)列的前n項公式和通項公式,是中檔題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項和Sn為負值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習冊答案