【題目】已知函數(shù),其中,且函數(shù)的最小正周期為。

(1)若函數(shù)處取到最小值,求函數(shù)的解析式;

(2)若將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),再將向左平移個(gè)單位,得到的函數(shù)圖象關(guān)于軸對(duì)稱,求函數(shù)的單調(diào)遞增區(qū)間。

【答案】(1);(2) .

【解析】試題分析:(1)由最小正周期得的值,由處取到最小值為,可求得,故可得其解析式;(2)根據(jù)三角函數(shù)的變換規(guī)律可得,由函數(shù)為偶函數(shù),即, 可求出的值,故而可求出函數(shù)的單調(diào)區(qū)間.

試題解析:(1)由函數(shù)的最小正周期為,有,又函數(shù)處取到最小值,故, , 即, 。又, , 從而.

(2)因?yàn)?/span>,則將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),再將向左平移個(gè)單位,得到的偶函數(shù)圖象,由,有, ,又 ,

,由 , 所以函數(shù)的單調(diào)遞增區(qū)間為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,為棱的中點(diǎn).

求證:(1)平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某市環(huán)保局連續(xù)30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù):

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求的展開式中的系數(shù)及展開式中各項(xiàng)系數(shù)之和;

(2)從0,2,3,4,5,6這6個(gè)數(shù)字中任取4個(gè)組成一個(gè)無(wú)重復(fù)數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,函數(shù),若函數(shù)的圖象與軸的兩個(gè)相鄰交點(diǎn)的距離為.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若時(shí), ,求的值.

(3)若,且有且僅有一個(gè)實(shí)根,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)某次數(shù)學(xué)競(jìng)賽隨機(jī)抽取名學(xué)生的成績(jī),分組為,統(tǒng)計(jì)后得到頻率分布直方圖如圖所示:

(1)試估計(jì)這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到);

(2)年級(jí)決定在成績(jī)中用分層抽樣抽取人組成一個(gè)調(diào)研小組,對(duì)髙一年級(jí)學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個(gè)調(diào)查,則在這三組分別抽取了多少人?

(3)現(xiàn)在要從(2)中抽取的人中選出正副個(gè)小組長(zhǎng),求成績(jī)?cè)?/span>中至少有人當(dāng)選為正、副小組長(zhǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,,其前項(xiàng)和滿足,其中

(1)設(shè)證明數(shù)列是等差數(shù)列;

(2)設(shè),為數(shù)列的前項(xiàng)和,求證;

(3)設(shè)為非零整數(shù),),試確定的值,使得對(duì)任意,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】開門大吉是某電視臺(tái)推出的游戲益智節(jié)目.選手面對(duì)號(hào)扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(lè)(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.正確回答每一扇門后,選手可自由選擇帶著獎(jiǎng)金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎(jiǎng)金.(獎(jiǎng)金金額累加)但是一旦回答錯(cuò)誤,獎(jiǎng)金將清零,選手也會(huì)離開比賽.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個(gè)年齡段:;(單位:歲),其猜對(duì)歌曲名稱與否人數(shù)如圖所示.

(1)寫出列聯(lián)表:判斷是否有的把握認(rèn)為猜對(duì)歌曲名稱與否與年齡有關(guān)?

說(shuō)明你的理由.(下面的臨界值表供參考)

(2)若某選手能正確回答第一、二、三、四扇門的概率分別為,,,,正確回答一個(gè)問(wèn)題后,選擇繼續(xù)回答下一個(gè)問(wèn)題的概率是,且各個(gè)問(wèn)題回答正確與否互不影響.設(shè)該選手所獲夢(mèng)想基金總數(shù)為,求的分布列及數(shù)學(xué)期望.

(參考公式其中

查看答案和解析>>

同步練習(xí)冊(cè)答案