10.一個(gè)角為30°,其終邊按逆時(shí)針?lè)较蛐D(zhuǎn)一周后的角的度數(shù)為390°.

分析 利用終邊相同角的表示方法求解即可.

解答 解:一個(gè)角為30°,其終邊按逆時(shí)針?lè)较蛐D(zhuǎn)一周后的角的度數(shù)為:390°.
故答案為:390°.

點(diǎn)評(píng) 本題考查角的表示,終邊相同角的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≥0}\\{x≤3}\end{array}\right.$給定.若P(x,y)為D上動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(1,3),則z=$\overrightarrow{OP}$•$\overrightarrow{OA}$的最大值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,圓O為正三角形ABC的內(nèi)切圓,P為圓O上一點(diǎn),向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則x+y的取值范圍為(  )
A.[$\frac{1}{2}$,1]B.[$\frac{1}{3}$,1]C.[$\frac{1}{4}$,1]D.[$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=$\frac{x}{{a}^{2}+a+1}$是冪函數(shù),則a=a=0,或a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求值:$\frac{\sqrt{1-2sin160°cos340°}}{cos200°+\sqrt{1-co{s}^{2}20°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=lg(x-1)+lg(x-2)的定義域?yàn)镸,函數(shù)y=lg(x2-3x+2)的定義域?yàn)镹,則 ( 。
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知二次函數(shù)滿足f(0)=-1,且對(duì)任意x都有f(x+1)=f(x)+2x+1,又g(x)=x+1.
(1)求f(x)的解析式;
(2)若當(dāng)x∈[1,2]時(shí),不等式f(x)≥t[g(x)-1]恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)函數(shù)F(x)=$\frac{f(x)+1+a}{g(x)-1}$+b,若對(duì)任意a∈[$\frac{1}{2}$,2],不等式F(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={x|lg(x-1)<1},B={x|$\frac{x+2}{4-x}$≥0},則A∩B=(  )
A.{x|-2≤x≤4}B.{x|4<x<11}C.{x|1<x<4}D.{x|-2≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列結(jié)論正確的是( 。
A.若A=R,B=(0,+∞),則f:x→|x|是集合A到集合B的函數(shù)
B.若A={x|0≤x≤4},B={y|0≤y≤3},則f:y=$\frac{2}{3}$x是集合A到集合B的映射
C.函數(shù)的圖象與y軸至少有1個(gè)交點(diǎn)
D.若y=f(x)是奇函數(shù),則其圖象一定經(jīng)過(guò)原點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案