分析:(Ⅰ)由函數(shù)極值的定義,先求函數(shù)f(x)的導(dǎo)函數(shù),由f'(-5)=f'(1)=0,可得關(guān)于m的方程,解出即可;
(Ⅱ)在(1)的條件下f'(x)=x2+4x-5=(x+5)(x-1),解不等式f'(x)>0,即可得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答:解:(Ⅰ)∵
f(x)=(2m-1)x3+2mx2-5m2x-1,
∴f'(x)=(2m-1)x
2+4mx-5m
2由題意,即
| 25(2m-1)-20m-5m2=0 | 2m-1+4m-5m2=0 |
| |
,
解得,m=1.
經(jīng)驗(yàn)證,當(dāng)m=1時(shí),f(x)的極值點(diǎn)是-5,1,所以m=1…6分
(Ⅱ)由(Ⅰ)
f(x)=x3+2x2-5x-1,f'(x)=x
2+4x-5=(x+5)(x-1),
解不等式f'(x)>0得,x<-5或x>1,
∴y=f(x)的遞增區(qū)間是(-∞,-5],[1,+∞).…12分.
點(diǎn)評(píng):本題綜合考查了導(dǎo)數(shù)在函數(shù)極值、單調(diào)性中的應(yīng)用,解題時(shí)要認(rèn)真體會(huì)導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的積極作用,規(guī)范解題.