如圖,⊙O的半徑OB垂直于直徑AC,D為AO上一點(diǎn),BD的延長(zhǎng)線交⊙O于點(diǎn)E,過E點(diǎn)的圓的切線交CA的延長(zhǎng)線于P.求證:PD2=PA•PC.
分析:利用切線的性質(zhì)、圓的性質(zhì)、切割線定理即可得出.
解答:證明:連接OE,∵PE切⊙O于點(diǎn)E,∴∠OEP=90°,∴∠OEB+∠BEP=90°,
∵OB=OE,∴∠OBE=∠OEB,
∵OB⊥AC于點(diǎn)O,∴∠OBE+∠BDO=90°.
故∠BEP=∠BDO=∠PDE,PD=PE,
又∵PE切⊙O于點(diǎn)E,∴PE2=PA•PC,
PD2=PA•PC.
點(diǎn)評(píng):熟練掌握切線的性質(zhì)、圓的性質(zhì)、切割線定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(Ⅰ)求證:PM2=PA•PC;
(Ⅱ)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過
N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長(zhǎng).
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).A.(選修4-1:幾何證明選講)
如圖,⊙O的半徑OB垂直于直徑AC,D為AO上一點(diǎn),BD的延長(zhǎng)線交⊙O于點(diǎn)E,過E點(diǎn)的圓的切線交CA的延長(zhǎng)線于P.
求證:PD2=PA•PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)⊙O的半徑為2
3
,OM=2,求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案