【題目】本小題滿分12分設(shè)函數(shù)

若函數(shù)在定義域上為增函數(shù),求實數(shù)的取值范圍;

的條件下,若函數(shù),使得成立,求實數(shù)的取值范圍

【答案】,

【解析】

試題分析:第一問利用導(dǎo)數(shù)在其定義域上滿足非負(fù)即可,最后轉(zhuǎn)換為最值問題來解決,很簡單,第二問轉(zhuǎn)換為最值問題來解決,注意分情況討論

試題解析: 函數(shù)的定義域為

在其定義域內(nèi)為增函數(shù),即上恒成立,

恒成立,故有

當(dāng)且僅當(dāng)時取等號).

的取值范圍為

使得成立,

可知時,

,所以當(dāng)時,上單調(diào)遞增,

所以上的最小值為

知,,,

當(dāng)時,,故恒成立,上單調(diào)遞增,

上的最大值為

,

,所以

當(dāng)時,,的兩根為

此時,故上單調(diào)遞增,由知,,又,

綜上所述,的取值范圍為 12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)2x.

(Ⅰ)若f(x)=,求x的值;

(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線 ,求:
(1)兩曲線(含直線)的公共點 P 的極坐標(biāo)
(2)過點 P ,被曲線 截得的弦長為 的直線的極坐標(biāo)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的外接圓半徑,角A、BC的對邊分別是a、b、c,且.

I)求角B和邊長b;

II)求面積的最大值及取得最大值時的a、c的值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,4],則函數(shù)g(x)= 的定義域是(
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是( )
A.有95℅的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
B.若有人未使用該血清,那么他一年中有95℅的可能性得感冒
C.這種血清預(yù)防感冒的有效率為95℅
D.這種血清預(yù)防感冒的有效率為5℅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB , C是三個觀察站,AB的正東,兩地相距6km,CB的北偏西30°,兩地相距4km,在某一時刻,A觀察站發(fā)現(xiàn)某種信號,并知道該信號的傳播速度為1km/s,4s后B , C兩個觀察站同時發(fā)現(xiàn)這種信號,在以過A , B兩點的直線為x軸,以AB的垂直平分線為y軸建立的平面直角坐標(biāo)系中,指出發(fā)出這種信號的P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù)).在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=4cosθ.

(1)寫出直線l的普通方程和圓C的直角坐標(biāo)方程.

(2)若點P坐標(biāo)為(1,1),圓C與直線l交于A,B兩點,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)計算27 +lg5﹣2log23+lg2+log29.
(2)已知f(x)=3x2﹣5x+2,求f( )、f(﹣a)、f(a+3).

查看答案和解析>>

同步練習(xí)冊答案