敘述并證明正弦定理.
,運(yùn)用向量法表示來(lái)證明,或者借助于三角函數(shù)的性質(zhì)來(lái)證明。
解析試題分析:
證明(向量法):
(1)當(dāng)為直角三角形時(shí),.
由銳角三角函數(shù)的定義,有,所以.
又,所以.
(2)當(dāng)為銳角三角形時(shí),如圖示
過(guò)點(diǎn)作單位向量垂直于,則,.
又由圖知,,為了與圖中有關(guān)的三角函數(shù)建立聯(lián)系,對(duì)上面向量等式的兩邊同取與向量的數(shù)量積運(yùn)算,得到:
,所以,即
所以.
同理,過(guò)點(diǎn)作與垂直的單位向量,可得.所以.
(2)當(dāng)為鈍角三角形時(shí),不妨設(shè),如圖示
過(guò)點(diǎn)作與垂直的單位向量,,.
同樣,可證得.因此,對(duì)于任意三角形均有.
注:還可運(yùn)用三角函數(shù)定義法證明或者等面積法證明。
考點(diǎn):正弦定理
點(diǎn)評(píng):掌握運(yùn)用向量的方法來(lái)證明正弦定理,簡(jiǎn)單明了,感受向量的幾何運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;如圖,四邊形中,,,為的內(nèi)角的對(duì)邊,
且滿足.
(Ⅰ)證明:;
(Ⅱ)若,設(shè),,
,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.
(Ⅰ)若的面積等于,求;
(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿12分)在銳角△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且
(1)確定角C的大;
(2)若,且△ABC的面積為,求a+b的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()的最小正周期為,
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;
(Ⅱ)在中,若,且,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知分別為三個(gè)內(nèi)角的對(duì)邊,且.
(Ⅰ)求角的大。
(Ⅱ)若,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在△ABC中,,.
(1)求;
(2)設(shè)的中點(diǎn)為,求中線的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
港口A北偏東30°方向的C處有一檢查站,港口正東方向的B處有一輪船,距離檢查站為31海里,該輪船從B處沿正西方向航行20海里后到達(dá)D處觀測(cè)站,已知觀測(cè)站與檢查站距離21海里,問(wèn)檢查站C離港口A有多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com