9.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)(1,$\frac{{\sqrt{2}}}{2}$),離心率e=$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M,N兩點(diǎn),且|${\overrightarrow{{F_2}M}$+$\overrightarrow{{F_2}N}}$|=$\frac{{2\sqrt{26}}}{3}$,求直線l的方程.

分析 (1)根據(jù)橢圓的離心率和定點(diǎn)坐標(biāo),代入求出a,b,即可求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)出直線方程,聯(lián)系直線和橢圓,利用根與系數(shù)之間的關(guān)系進(jìn)行求解即可.

解答 解:(1)由已知得$\left\{{\begin{array}{l}{\frac{c}{a}=\frac{{\sqrt{2}}}{2}}\\{\frac{1}{a^2}+\frac{1}{{2{b^2}}}=1}\\{{c^2}={a^2}+{b^2}}\end{array}}\right.$,解得a2=2,b2=1,
故所求橢圓的方程為$\frac{x^2}{2}+{y^2}=1$…(4分)
(2)由(1)得F1(-1,0),F(xiàn)2(1,0)
①若直線l的斜率不存在,則直線l的方程為x=-1,由$\left\{{\begin{array}{l}{x=-1}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$得$y=±\frac{{\sqrt{2}}}{2}$.
設(shè)$M(-1,\frac{{\sqrt{2}}}{2}),N(-1,-\frac{{\sqrt{2}}}{2})$
∴$|{\overrightarrow{{F_2}M}+\overrightarrow{{F_2}N}}|=|{({-2,\frac{{\sqrt{2}}}{2}})+({-2,-\frac{{\sqrt{2}}}{2}})}|=|{(-4,0)}|=4$這與已知相矛盾;…(6分)
②若直線l的斜率存在,設(shè)直線l的斜率為k,則直線l的方程為y=k(x+1).
設(shè)M(x1,y1),N(x2,y2),
聯(lián)立$\left\{{\begin{array}{l}{y=k({x+1})}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,消元得(1+2k2)x2+4k2x+2k2-2=0,
∴${x_1}+{x_2}=\frac{{-4{k^2}}}{{1+2{k^2}}},{x_1}{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}$,
∴所以${y_1}+{y_2}=k({x_1}+{x_2}+2)=\frac{2k}{{1+2{k^2}}}$…(10分)
又∵$\overrightarrow{{F_2}M}=({x_1}-1,{y_1}),\overrightarrow{{F_2}N}=({x_2}-1,{y_2})$
∴$\overrightarrow{{F_2}M}+\overrightarrow{{F_2}N}=({x_1}+{x_2}-2,{y_1}+{y_2})$
∴$|{\overrightarrow{{F_2}M}+\overrightarrow{{F_2}N}}|=\sqrt{{{({x_1}+{x_2}-2)}^2}+{{({y_1}+{y_2})}^2}}=\sqrt{{{({\frac{{8{k^2}+2}}{{1+2{k^2}}}})}^2}+{{({\frac{2k}{{1+2{k^2}}}})}^2}}=\frac{{2\sqrt{26}}}{3}$
化簡得40k4-23k2-17=0,
解得k2=1或${k^2}=-\frac{17}{40}$(舍去),
∴k=±1,
故所求直線l的方程為y=x+1或y=-x-1…(12分)

點(diǎn)評 本題主要考查橢圓的方程以及直線和橢圓的位置關(guān)系的應(yīng)用,利用消元法轉(zhuǎn)化為一元二次方程形式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在極坐標(biāo)系中,極點(diǎn)為O,曲線C1:ρ=6sinθ與曲線C2:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,則曲線C1上的點(diǎn)到曲線C2的最大距離為$3+\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過⊙O外一點(diǎn)P作⊙O的切線PA,切點(diǎn)為A,連OP與⊙O交于點(diǎn)C,過C作AP的垂線,垂足為D,若PA=8cm,PC=4cm,則PD的長為3.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}$=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P是C上異于頂點(diǎn)的任一點(diǎn),則直線PA2與直線PA1的斜率之積是(  )
A.-$\frac{3}{4}$B.-$\frac{9}{16}$C.-$\frac{4}{3}$D.-$\frac{16}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了評價某個電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是(  )
A.有99%的人認(rèn)為該欄目優(yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)橢圓上一點(diǎn)P(3,2)到兩焦點(diǎn)的距離之和為8;
(2)橢圓兩焦點(diǎn)間的距離為16,且橢圓上某一點(diǎn)到兩焦點(diǎn)的距離分別等于9或15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\frac{3{x}^{2}}{\sqrt{1-2x}}$+(2x+1)2的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x<$\frac{1}{2}$}B.{x|x<$\frac{1}{2}$且x≠-$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$且x≠-$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)奇函數(shù)f(x)與g(x)偶函數(shù)的定義域都為(-∞,+∞),且滿足f(x)+g(x)=2x,有下列命題:
①g(x)≥1在(-∞,+∞)恒成立;
②f(x)2-g(x)2=-1在(-∞,+∞)恒成立;
③f(x)≤g(x)在(-∞,+∞)恒成立;
④g(2x)=2f(x)g(x)在(-∞,+∞)恒成立.
則真命題是①②③(填所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)M(3,1),直線ax-y+4=0及圓C:(x-1)2+(y-2)2=4
(1)若直線ax-y+4=0與圓C相切,求a的值;
(2)若直線ax-y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長為2$\sqrt{3}$,求a的值;
(3)求過點(diǎn)M的圓C的切線方程.

查看答案和解析>>

同步練習(xí)冊答案