分析 (1)通過對(duì)an+1=3an+2(n∈N*)變形可知an+1+1=3(an+1),進(jìn)而即得結(jié)論;
(2)通過(1)可知bn=n3n-n,進(jìn)而Tn=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$,利用錯(cuò)位相減法計(jì)算可知Qn=1•31+2•32+3•33+…+n•3n=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$,進(jìn)而計(jì)算可得結(jié)論.
解答 (1)證明:∵an+1=3an+2(n∈N*),
∴an+1+1=3(an+1),
又∵a1+1=2+1=3,
∴數(shù)列{an+1}是以首項(xiàng)、公比均為3的等比數(shù)列;
(2)解:由(1)可知:an+1=3n,
∴bn=nan=n(3n-1)=n3n-n,
∴Tn=1•31+2•32+3•33+…+n•3n-(1+2+3+…+n)
=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$,
記Qn=1•31+2•32+3•33+…+n•3n,
則$\frac{1}{3}$Qn=1•30+2•31+3•32+…+(n-1)•3n-2+n•3n-1,
兩式相減得:-$\frac{2}{3}$Qn=30+31+32+…+3n-2+3n-1-n•3n
=$\frac{1-{3}^{n}}{1-3}$-n•3n
=($\frac{1}{2}$-n)•3n-$\frac{1}{2}$,
∴Qn=-$\frac{3}{2}$[($\frac{1}{2}$-n)•3n-$\frac{1}{2}$]=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$,
∴Tn=1•31+2•32+3•33+…+n•3n-$\frac{n(n+1)}{2}$
=($\frac{n}{2}$-$\frac{1}{4}$)•3n+1+$\frac{3}{4}$-$\frac{n(n+1)}{2}$.
點(diǎn)評(píng) 本題考查等比數(shù)列的判定,考查數(shù)列的通項(xiàng)及前n項(xiàng)和,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | φ | B. | 9kyd4fp | C. | {a,c} | D. | {b,e} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 14 | C. | 15 | D. | 14或15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com