由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”類比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“(m•n)t=m(n•t)”類比得到“(
a
b
c
=
a
•(
b
c
)”;
④“t≠0,mt=xt⇒m=x”類比得到“
p
0
,
a
p
=
x
p
a
=
x
”;
⑤“|m•n|=|m|•|n|”類比得到“|
a
b
|=|
a
|•
|b
|
”;
⑥“
ac
bc
=
a
b
”類比得到“
a
c
b
c
=
a
b
”.
以上式子中,類比得到的結(jié)論正確的個數(shù)是(  )
分析:利用向量的數(shù)量積滿足交換律和分配律,但是不滿足消去律和結(jié)合律,即可得到結(jié)論.
解答:解:∵向量的數(shù)量積滿足交換律,∴①正確;
∵向量的數(shù)量積滿足分配律,∴②正確;
∵向量的數(shù)量積不滿足結(jié)合律,∴③不正確;
∵向量的數(shù)量積不滿足消去律,∴④不正確;
由向量的數(shù)量積公式,可知⑤不正確;
∵向量的數(shù)量積不滿足消去律,∴⑥不正確
綜上知,正確的個數(shù)為2個
故選B.
點評:本題考查類比推理的應(yīng)用,利用向量的數(shù)量積滿足交換律和分配律,但是不滿足消去律和結(jié)合律是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“
a
b
=
b
a

②“(m+n)t=mt+nt”類比得到“(
a
+
b
)•
c
=
a
+
b
c
”;
③“t≠0,mt=nt⇒m=n”類比得到“
c
≠0,
a
c
=
b
c
a
=
c
”;
④“|m•n|=|m|•|n|”類比得到“|
a
b
|=|
a
|•|
b
|”;
⑤“(m•n)t=m(n•t)”類比得到“(
a
b
)•
c
=
a
•(
b
c
)
”;
⑥“
ac
bc
=
a
b
”類比得到
a
c
b
c
=
b
a
.     以上的式子中,類比得到的結(jié)論正確的是
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則?:
①“mn=nm”類比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”類比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“(m•n)t=m(n•t)”類比得到“(
a
b
)•
c
=
a
•(
b
c
)”;
④“t≠0,mt=xt⇒m=x”類比得到“
p
0
,
a
p
=
x
p
a
=
x
”;
⑤“|m•n|=|m|•|n|”類比得到“|
a
b
|=|
a
|•|
b
|?”;
以上式子中,類比得到的結(jié)論正確的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”類比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“t≠0,mt=nt⇒m=n”類比得到“
c
≠0,
a
c
=
b
c
a
=
c
”;
④“|m•n|=|m|•|n|”類比得到“|
a
b
|=|
a
|•|
b
|”.
以上類比得到的正確結(jié)論的序號是
①②
①②
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:

①“mn=nm”類比得到“a·b=b·a”;

②“(m+nt=mt+nt”類比得到“(a+b)·c=a·c+b·c”;

③“t0,mt=nt”類比得到“”;

④“”類比得到“”.

以上類比得到的正確結(jié)論的序號是           (寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案