【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種.若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:
(Ⅰ)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

【答案】解:(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a. 由統(tǒng)計(jì)數(shù)據(jù)可知:
P(X=0.9a)= ,P(X=0.8a)= ,P(X=0.7a)= ,P(X=a)= ,P(X=1.1a)= ,
P(X=1.3a)=
所以X的分布列為:

X

0.9a

0.8a

0.7a

a

1.1a

1.3a

P

所以EX=0.9a× +0.8a× +0.7a× +a× +1.1a× +1.3a× = = ≈942.
(Ⅱ) ①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + =
②設(shè)Y為該銷售商購(gòu)進(jìn)并銷售一輛二手車的利潤(rùn),Y的可能取值為﹣5000,10000.
所以Y的分布列為:

Y

﹣5000

10000

P

所以EY=﹣5000× +10000× =5000.
所以該銷售商一次購(gòu)進(jìn)100輛該品牌車齡已滿三年的二手車獲得利潤(rùn)的期望值為100EY=50萬(wàn)元
【解析】(Ⅰ)由題意可知X的可能取值為0.9a,0.8a,0.7a,a,1.1a,1.3a.由統(tǒng)計(jì)數(shù)據(jù)可知其概率及其分布列.(II)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為 ,三輛車中至多有一輛事故車的概率為P= + . ②設(shè)Y為該銷售商購(gòu)進(jìn)并銷售一輛二手車的利潤(rùn),Y的可能取值為﹣5000,10000.即可得出分布列與數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F,設(shè)直線l:x=5與x軸的交點(diǎn)為E,過(guò)點(diǎn)F且斜率為k的直線l1與橢圓交于A,B兩點(diǎn),M為線段EF的中點(diǎn).
(I)若直線l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過(guò)點(diǎn)B作直線BN⊥l于點(diǎn)N,證明:A,M,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐,平面,,.

(1)求證:;

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長(zhǎng)為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點(diǎn)F在平面ABED內(nèi)的正投影為G,且G在AE上,點(diǎn)M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (a>0,β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程ρcos(θ﹣ )=
(Ⅰ)若曲線C與l只有一個(gè)公共點(diǎn),求a的值;
(Ⅱ)A,B為曲線C上的兩點(diǎn),且∠AOB= ,求△OAB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,若橢圓與圓相交于M,N兩點(diǎn),且圓E在橢圓內(nèi)的弧長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)橢圓的上焦點(diǎn)作兩條相互垂直的直線,分別交橢圓于A,B、C,D,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某河流在一段時(shí)間x min內(nèi)流過(guò)的水量為y m3,yx的函數(shù),yf(x)=.

(1)當(dāng)x1變到8時(shí),y關(guān)于x的平均變化率是多少?它代表什么實(shí)際意義?

(2)f′(27)并解釋它的實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4

(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x02+(y﹣y02=3作兩條切線,分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案