【題目】已知數(shù)列{an}的各項(xiàng)均為整數(shù),其前n項(xiàng)和為Sn.規(guī)定:若數(shù)列{an}滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第r﹣1項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,求出Sn,并證明:對(duì)任意n∈N*,anSn≥a6S6;
(3)已知數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”,且a1=﹣10,是否存在正整數(shù)k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(或)
(2)見(jiàn)解析;(3)存在或或或.
【解析】
試題(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,{an}前6項(xiàng)為等差數(shù)列,從第5項(xiàng)起為等比數(shù)列,可得a6=a1+5,a5=a1+4,且,即,解得a1,即可求數(shù)列{an}的通項(xiàng)公式;
(2)由(1)得(或,可見(jiàn)數(shù)列{anSn}的最小項(xiàng)為a6S6=﹣6,即可證明:對(duì)任意n∈N*,anSn≥a6S6;
(3),分類討論,求出所有的k,m值.
解:(1)∵數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,
∴{an}前6項(xiàng)為等差數(shù)列,從第5項(xiàng)起為等比數(shù)列,
∴a6=a1+5,a5=a1+4,且,即,解得a1=﹣3
∴(或)
(2)由(1)得(或)
,
{Sn}:﹣3,﹣5,﹣6,﹣6,﹣5,﹣3,1,9,25,…{anSn}:9,10,6,0,﹣5,﹣6,4,72,400,…,
可見(jiàn)數(shù)列{anSn}的最小項(xiàng)為a6S6=﹣6,
證明:,
列舉法知當(dāng)n≤5時(shí),(anSn)min=a5S5=﹣5;
當(dāng)n≥6時(shí),,設(shè)t=2n﹣5,則.
(3)數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”,且a1=﹣10,∵
∴
①當(dāng)k<m≤12時(shí),由得(k+m)(k﹣m)=21(k﹣m)k+m=21,k,m≤12,m>k,∴或.
②當(dāng)m>k>12時(shí),由2k﹣11﹣56=2m﹣11﹣56得m=k,不存在
③當(dāng)k≤12,m>12時(shí),由,2m﹣10=k2﹣21k+112
當(dāng)k=1時(shí),2m﹣10=92,mN*;當(dāng)k=2時(shí),2m﹣10=74,mN*;
當(dāng)k=3時(shí),2m﹣10=58,mN*;當(dāng)k=4時(shí),2m﹣10=44,mN*;
當(dāng)k=5時(shí),2m﹣10=25,m=15∈N*;當(dāng)k=6時(shí),2m﹣10=22,mN*;
當(dāng)k=7時(shí),2m﹣10=14,mN*;當(dāng)k=8時(shí),2m﹣10=23,m=13∈N*;
當(dāng)k=9時(shí),2m﹣10=22,m=12舍去;當(dāng)k=10時(shí),2m﹣10=2,m=11舍去
當(dāng)k=11時(shí),2m﹣10=2,m=11舍去;當(dāng)k=12時(shí),2m﹣10=22,m=12舍去
綜上所述,∴存在或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列 的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為,,, ;,,,;,…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,().
(1)計(jì)算,,,,并求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;
(3)由數(shù)列的項(xiàng)組成一個(gè)新數(shù)列:,,,,,設(shè)為數(shù)列的前項(xiàng)和,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,,為垂足,在上,將沿折起,使點(diǎn)到點(diǎn)的位置,連,且,如圖2.
(1)求證:平面;
(2)求鈍二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,點(diǎn)在直線上,且,求證:為定值;
(3)設(shè)點(diǎn)在橢圓上運(yùn)動(dòng),,且點(diǎn)到直線的距離為常數(shù),求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自然狀態(tài)下的魚類是一種可再生資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚群總量的影響.用表示某魚群在第年年初的總量且.不考慮其他因素,設(shè)在第年內(nèi)魚群的繁殖量及捕撈量都與成正比,死亡量與成正比,這些比例系數(shù)依次為正常數(shù),,
(1)求與的關(guān)系式
(2)若每年年初魚群的總量保持不變,求,,,所應(yīng)滿足的條件
(3)設(shè),,為保證對(duì)任意,都有,則捕撈強(qiáng)度的最大允許值是多少?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時(shí):當(dāng)船速不大于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速成正比;當(dāng)船速不小于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比;當(dāng)船速為30海里/時(shí),它每小時(shí)使用的燃料費(fèi)用為300元;其余費(fèi)用(不論船速為多少)都是每小時(shí)480元;
(1)試把每小時(shí)使用的燃料費(fèi)用P(元)表示成船速v(海里/時(shí))的函數(shù);
(2)試把船從甲地行駛到乙地所需要的總費(fèi)用Y表示成船速v的函數(shù);
(3)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需要的總費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),與直線相交于點(diǎn).
證明:以為直徑的圓恒過(guò)軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b是不相等的兩個(gè)正數(shù),在a,b之間插入兩組實(shí)數(shù):x1,x2,…,xn和y1,y2,…,yn,(n∈N*,且n≥2),使得a,x1,x2,…,xn,b成等差數(shù)列,a,y1,y2,…,yn,b成等比數(shù)列,給出下列四個(gè)式子:①;②;③;④.其中一定成立的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com