【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.

【答案】2800元

【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為 桶, 桶,利潤為
則根據(jù)題意可得

目標(biāo)函數(shù) ,作出可行域,如圖所示

作直線 然后把直線向可行域平移,
由圖象知當(dāng)直線經(jīng)過 時(shí),目標(biāo)函數(shù) 的截距最大,此時(shí) 最大,
可得,即

此時(shí) 最大 ,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為2800.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為常數(shù)),函數(shù)為自然對(duì)數(shù)的底).

(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如下圖,則該幾何體的體積為( )

A. 18 B. 20 C. 24 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對(duì)稱軸是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓C: (a>b>0).稱圓心在原點(diǎn)O,半徑為 的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F( ,0),其短軸上的一個(gè)端點(diǎn)到點(diǎn)F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1 , l2 , 使得l1 , l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1 , l2是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對(duì)數(shù)的底數(shù),e=2.71828…
(1)當(dāng)a=0時(shí),解不等式f(x)<2;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)設(shè)a≥ ,討論關(guān)于x的方程f(f(x))= 的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時(shí), ;

(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1979年,李政道博士給中國科技大學(xué)少年班出過一道智趣題:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡覺,準(zhǔn)備第二天再分,夜里1只猴子偷偷爬起來,先吃掉一個(gè)桃子,然后將其分成5等份,藏起自己的一份就去睡覺了;第2只猴子又爬起來,將剩余的桃子吃掉一個(gè)后,也將桃子分成5等份;藏起自己的一份睡覺去了;以后的3只猴子都先后照此辦理,問:最初至少有多少個(gè)桃子?最后至少剩下多少個(gè)桃子?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,曲線過點(diǎn),且在點(diǎn)處的切線方程為.

1)求, 的值;

2)證明:當(dāng)時(shí),

3)若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案