4.若復(fù)數(shù)z=m(m+1)+(m+1)i(i為虛數(shù)單位)是純虛數(shù),則實數(shù)m的值為0.

分析 根據(jù)復(fù)數(shù)為純虛數(shù)的概念,得到復(fù)數(shù)的實部為0,并且虛部不為0求出m.

解答 解:因為復(fù)數(shù)z=m(m+1)+(m+1)i(i為虛數(shù)單位)是純虛數(shù),所以$\left\{\begin{array}{l}{m(m+1)=0}\\{m+1≠0}\end{array}\right.$,解得m=0;
故答案為:0.

點評 本題考查了復(fù)數(shù)的基本概念;如果復(fù)數(shù)a+bi(a,b是實數(shù))是純虛數(shù),那么a=0并且b≠0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}{|3x+1|,x<0}\\{lo{g}_{3}x,x>0}\end{array}\right.$,g(x)=x2-2x+2m-1,若函數(shù)y=f(g(x))-m有6個零點,則實數(shù)m的取值范圍是(  )
A.(0,$\frac{5}{7}$)B.($\frac{3}{7}$,$\frac{5}{7}$)C.(0,$\frac{3}{7}$)D.($\frac{2}{7}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}中a2=2,a5=$\frac{1}{4}$,則a1•a2+a2•a3+a3•a4+…+an•an+1等于(  )
A.16(1-4-nB.16(1-2nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{-x+3,x>1}\end{array}\right.$,那么f(f($\frac{5}{2}$))=( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.記等差數(shù)列{an}的前n項和為Sn,已知a1=2,且數(shù)列{$\sqrt{{S}_{n}}$}也為等差數(shù)列,則a26的值為102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知cosθ>0,tanθ<0,則$\sqrt{1-co{s}^{2}θ}$化簡結(jié)果為(  )
A.±sinθB.sinθC.-sinθD.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,3-m),若∠ABC為銳角,則實數(shù)m的取值范圍($\frac{3}{4}$,$\frac{19}{2}$)∪($\frac{19}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=sin(x+$\frac{π}{6}$)+2cos2$\frac{x}{2}$,
(1)求函數(shù)f(x)的周期;
(2)當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對于橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),c為橢圓半焦距,e為橢圓離心率,過原點O的直線與橢圓C交于A、B兩點(A、B不是橢圓C的頂點),點D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M、N兩點,證明:
(1)當(dāng)e≠$\frac{\sqrt{2}}{2}$時,設(shè)直線BD、AM的斜率分別為k1、k2,則k1=(1-2e2)k2,當(dāng)e=$\frac{\sqrt{2}}{2}$時,則直線AM與x軸垂直;
(2)△OMN面積的最大值為$\frac{{c}^{4}}{4ab}$.

查看答案和解析>>

同步練習(xí)冊答案