已知一扇形的中心角是α,所在圓的半徑是R.
(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面積;
(2)若扇形的周長是一定值c(c>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積?
【答案】分析:(1)直接求出扇形的面積,求出三角形的面積,然后求出扇形的弧所在的弓形面積;
(2)法一:通過周長關(guān)系式,化簡扇形的面積公式,得到關(guān)于α的表達(dá)式,利用基本不等式解答即可.
法二:通過周長關(guān)系式,化簡扇形的面積公式,得到關(guān)于弧長l的表達(dá)式,利用二次函數(shù)的最值求出最大值,以及圓心角解答即可.
解答:解:(1)設(shè)弧長為l,弓形面積為S,
∵α=60°=,R=10,∴l(xiāng)=π(cm),
S=S-S=×π×10-×102×sin60°
=50(-)(cm2).

(2)法一:∵扇形周長c=2R+l=2R+αR,
∴R=
∴S=α•R2=α(2=α•
=
∴當(dāng)且僅當(dāng)α=,即α=2(α=-2舍去)時(shí),扇形面積有最大值

法二:由已知2R+l=c,∴R=(l<c),
∴S=Rl=•l=(cl-l2
=-(l-2+,
∴當(dāng)l=時(shí),Smax=,此時(shí)α===2,
∴當(dāng)扇形圓心角為2弧度時(shí),扇形面積有最大值
點(diǎn)評:本題是基礎(chǔ)題,考查扇形的面積公式的應(yīng)用,基本不等式以及二次函數(shù)的應(yīng)用,利用基本不等式求最值需要滿足“正、定、等”的條件;二次函數(shù)注意x的范圍;考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一扇形的中心角是α,所在圓的半徑是R.
(1)若α=60°,R=10cm,求扇形的弧所在的弓形面積;
(2)若扇形的周長是一定值c(c>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高一3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知一扇形的中心角是2弧度,其所對弦長為2,求此扇形的面積。

⑵若扇形的周長是,當(dāng)扇形的圓心角a為多少弧度時(shí),該扇形面積有最大面積 ?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一扇形的中心角是α,其所在圓的半徑是R.

(1)若α=60°,R=10 cm,求扇形的弧長及該弧所在的弓形面積;

(2)若扇形的周長是一定值C(C>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一扇形的中心角是α,其所在圓的半徑是R.

(1)若α=60°,R=10 cm,求扇形的弧長及該弧所在的弓形面積;

(2)若扇形的周長是一定值C(C>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積?

查看答案和解析>>

同步練習(xí)冊答案