【題目】某電子商務(wù)平臺的管理員隨機(jī)抽取了1000位上網(wǎng)購物者,并對其年齡(在10歲到69歲之間)進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示.
年齡 | ||||||
人數(shù) | 100 | 150 | 200 | 50 |
已知,,三個(gè)年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.
(1)求的值;
(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費(fèi)主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費(fèi)潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費(fèi)潛力軍的概率.
【答案】(1),;(2)
【解析】
(1)根據(jù)人數(shù)和為100及人數(shù)的等比關(guān)系列方程組求解即可;
(2)在抽取的5人中,有3人是消費(fèi)主力軍,分別記為,,,有2人是消費(fèi)潛力軍,分別記為,,利用列舉法及古典概型的公式求解即可.
(1)由題意得,解得,.
(2)由題意可知,在抽取的5人中,有3人是消費(fèi)主力軍,分別記為,,,有2人是消費(fèi)潛力軍,分別記為,.記“這2人中至少有一人是消費(fèi)潛力軍”為事件.
從這5人中抽取2人所有可能情況為,,,,,,,,,,共10種.
符合事件的有,,,,,,,共7種.
故所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋子中有個(gè)紅球,個(gè)白球,若從中任取個(gè)球,則這個(gè)球中有白球的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚(yáng)傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計(jì)了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值, 求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達(dá)人”. 設(shè),現(xiàn)從所有“閱讀達(dá)人”里任取3人,求其中乙組的人數(shù)X的分布列和數(shù)學(xué)期望.
(Ⅲ)記甲組閱讀量的方差為. 在甲組中增加一名學(xué)生A得到新的甲組,若A的閱讀量為10,則記新甲組閱讀量的方差為;若A的閱讀量為20,則記新甲組閱讀量的方差為,試比較,,的大小.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,,.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)判斷線段上是否存在點(diǎn),使得平面平面?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級隨機(jī)選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在到之間,將測量結(jié)果按如下方式分成六組:第1組,第2組,…,第6組,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長,求被選取的男生恰好在第5組或第6組的概率;
(2)試估計(jì)該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:函數(shù)在其定義域上是單調(diào)遞增函數(shù).
(2)設(shè),當(dāng)時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥底面ABCD,PD=DC=2,E,F,G分別是AB,PB,CD的中點(diǎn).
(1)求證:AC⊥PB;
(2)求證:GF∥平面PAD;
(3)求點(diǎn)G到平面PAB的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com