【題目】已知函數(shù).

(Ⅰ)若直線在點處切線方程為,求實數(shù)的值;

(Ⅱ)若函數(shù)3個零點,求實數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)求出導函數(shù),根據(jù)題意利用導數(shù)的幾何意義可得,求解即可.

(Ⅱ)將函數(shù)轉化為,從而可得方程2個不為1的不等實數(shù)根,然后分離參數(shù)后則有函數(shù) 圖象有兩個交點,利用導數(shù)畫出的簡圖,利用數(shù)形結合即可求解.

(Ⅰ)因為,

,

所以.

因為曲線在點處的切線方程為

所以,即.

(Ⅱ)

所以有一個零點.

要使得3個零點,即方程2個不為1的不等實數(shù)根,

又方程,令,

即函數(shù)圖象有兩個交點,

,得

的單調(diào)性如表:

1

-

-

0

+

極小值

時,,又,

可作出的大致圖象,由圖象得

所以,要使得3個零點,

則實數(shù)的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線上的一點作拋物線的切線,分別交x軸于點Dy軸于點B,點Q在拋物線上,點E,F分別在線段AQ,BQ上,且滿足,線段QD交于點P.

(1)當點P在拋物線C上,且時,求直線的方程;

(2)當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓)的左右焦點分別為,橢圓的上頂點為點,點為橢圓上一點,且.

1)求橢圓的離心率;

2)若,過點的直線交橢圓于兩點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是由兩個全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:

2)如果二面角BEFD的平面角為60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.

(1)求數(shù)列的通項公式;

(2)設是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中,,過分別作,,垂足分別,已知,將梯形沿同側折起,得空間幾何體 ,如圖

1,證明:平面;

2,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對于下列說法:

越小,則國民分配越公平;

②設勞倫茨曲線對應的函數(shù)為,則對,均有;

③若某國家某年的勞倫茨曲線近似為,則

④若某國家某年的勞倫茨曲線近似為,則

其中不正確的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省開展精準脫貧,攜手同行的主題活動,某貧困縣統(tǒng)計了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計結果見下表.

走訪數(shù)量區(qū)間

頻數(shù)

頻率

b

10

38

a

0.27

9

總計

100

1.00

1)求ab的值;

2)根據(jù)表中數(shù)據(jù),估計這100名基層干部走訪數(shù)量的中位數(shù)(精確到個位);

3)如果把走訪貧困戶不少于35戶視為工作出色,按照分層抽樣,從工作出色的基層干部中抽取4人,再從這4人中隨機抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設中心在原點,焦點在軸上的橢圓過點,且離心率為的右焦點,上一點,軸,的半徑為

1)求的方程;

2)若直線交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案