一個(gè)多面體的直觀圖及三視圖如圖所示:(其中M、N分別是AF、BC的中點(diǎn))

(1)求證:MN∥平面CDEF;

(2)求多面體A-CDEF的體積.

 

 

(1)見解析 (2)

【解析】【解析】
由三視圖可知,AB=BC=BF=2,DE=CF=2,∠CBF=

(1)證明:取BF的中點(diǎn)G,連接MG、NG,由M、N分別為AF、BC的中點(diǎn)可得,NG∥CF,MG∥EF,

∴平面MNG∥平面CDEF,

又MN?平面MNG,

∴MN∥平面CDEF.

(2)取DE的中點(diǎn)H.

∵AD=AE,∴AH⊥DE,

在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,

平面ADE∩平面CDEF=DE.

∴AH⊥平面CDEF.

∴多面體A-CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH=.S矩形CDEF=DE·EF=4,

∴棱錐A-CDEF的體積為V=·S矩形CDEF·AH=×4×

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:填空題

設(shè)動(dòng)點(diǎn)P在棱長為1的正方體ABCD-A1B1C1D1的對(duì)角線BD1上,記=λ.當(dāng)∠APC為鈍角時(shí),λ的取值范圍是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,側(cè)面對(duì)角線AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:填空題

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1所成的角是________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:選擇題

已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是(  )

A.α⊥β,且m?α B.m∥n,且n⊥β

C.α⊥β,且m∥α D.m⊥n,且n∥β

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為(  )

A.4 B. C. D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:選擇題

用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上(  )

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+…+(k+1)2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:解答題

已知x∈R,a=x2+,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:選擇題

在R上定義運(yùn)算“*”:x*y=x(1-y).若不等式(x-y)*(x+y)<1對(duì)一切實(shí)數(shù)x恒成立,則實(shí)數(shù)y的取值范圍是(  )

A.(-,) B.(-,)

C.(-1,1) D.(0,2)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案