【題目】已知函數(shù),其中常數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線(xiàn)方程為,若內(nèi)恒成立,則稱(chēng)為函數(shù)類(lèi)對(duì)稱(chēng)點(diǎn),當(dāng)時(shí),試問(wèn)是否存在類(lèi)對(duì)稱(chēng)點(diǎn),若存在,請(qǐng)至少求出一個(gè)類(lèi)對(duì)稱(chēng)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1;(2)存在, .

【解析】試題分析:(1)先求得定義域求導(dǎo)得,由于,所以增區(qū)間為;(2)當(dāng)時(shí), ,利用導(dǎo)數(shù)求得切線(xiàn),兩式相減得,利用導(dǎo)數(shù)求得以當(dāng)時(shí), 存在類(lèi)對(duì)稱(chēng)點(diǎn)”.

試題解析:

1)函數(shù)的定義域?yàn)?/span>,,,,,令,即,,

所以函數(shù)的單調(diào)遞增區(qū)間是;

2)當(dāng)時(shí), ,

, ,

,

,

,當(dāng)時(shí), 上單調(diào)遞減.

當(dāng)時(shí),

從而有時(shí), ,

當(dāng)時(shí), 上單調(diào)遞減,

當(dāng)時(shí), ,

從而有時(shí), ,

當(dāng)時(shí), 不存在類(lèi)對(duì)稱(chēng)點(diǎn)

當(dāng)時(shí),

上是增函數(shù),故,

所以當(dāng)時(shí), 存在類(lèi)對(duì)稱(chēng)點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(Ⅰ)求曲線(xiàn)的普通方程與直線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)到直線(xiàn)距離的最大值及其對(duì)應(yīng)的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大理石工廠(chǎng)初期花費(fèi)98萬(wàn)元購(gòu)買(mǎi)磨大理石刀具,第一年需要各種費(fèi)用12萬(wàn)元,從第二年起,每年所需費(fèi)用比上一年增加4萬(wàn)元,該大理石加工廠(chǎng)每年總收入50萬(wàn)元.

(1)到第幾年末總利潤(rùn)最大,最大值是多少?

(2)到第幾年末年平均利潤(rùn)最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時(shí)的解析式f(x)= (a∈R).
(1)寫(xiě)出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面, 直線(xiàn), 內(nèi)不同的兩點(diǎn), 內(nèi)不同的兩點(diǎn),且直線(xiàn)分別是線(xiàn)段的中點(diǎn),下列判斷正確的是( )

A. 當(dāng)時(shí), 兩點(diǎn)不可能重合

B. 兩點(diǎn)可能重合,但此時(shí)直線(xiàn)不可能相交

C. 當(dāng)相交,直線(xiàn)平行于時(shí),直線(xiàn)可以與相交

D. 當(dāng)是異面直線(xiàn)時(shí),直線(xiàn)可能與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓

(1)若直線(xiàn)與圓相交于兩個(gè)不同點(diǎn),求的最小值;

(2)直線(xiàn)上是否存在點(diǎn),滿(mǎn)足經(jīng)過(guò)點(diǎn)有無(wú)數(shù)對(duì)互相垂直的直線(xiàn),它們分別與圓和圓相交,并且直線(xiàn)被圓所截得的弦長(zhǎng)等于直線(xiàn)被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)結(jié)論正確的個(gè)數(shù)為( )

①小趙、小錢(qián)、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件=“4個(gè)人去的景點(diǎn)不相同”,事件 “小趙獨(dú)自去一個(gè)景點(diǎn)”,則

②設(shè)函數(shù)存在導(dǎo)數(shù)且滿(mǎn)足,則曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為-1;

③設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值分別為;

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一個(gè)居民月用電量標(biāo)準(zhǔn),用電量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為此,政府調(diào)查了100戶(hù)居民的月平均用電量(單位:度),以, , , , , 分組的頻率分布直方圖如圖所示.

(1)求直方圖中的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計(jì)總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時(shí)滿(mǎn)足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n].
則稱(chēng)[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個(gè)“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時(shí),求出n﹣m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案