精英家教網 > 高中數學 > 題目詳情
已知正項等比數列{an}中,a4•a5=8,則log2a1+log2a2+…+log2a8的值為( 。
分析:利用 等比數列的定義和性質,把要求的式子化為log2(a4a5)4,把條件代入并利用對數的運算性質求出結果.
解答:解:正項等比數列{an}中,
∵log2a1+log2a2+…+log2a8 =log2[a1a8•a2a7•a3a6•a4a5]=log2(a4a5)4 
=log284=log2212=12,
故選B.
點評:本題主要考查等比數列的定義和性質,對數的運算性質的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正項等比數列{an}中,a1=1,a3a7=4a62,則S6=( 。
A、
61
32
B、
31
16
C、
63
32
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項等比數列{an}滿足:a7=a6+2a5,若存在兩項am,an使得
aman
=4a1,則
1
m
+
1
n
的最小值為( 。
A、
2
3
B、
5
3
C、
25
6
D、不存在

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•錦州二模)已知正項等比數列{an}滿足:a3=a2+2a1,若存在兩項am,an,使得
aman
=4a1
,則
1
m
+
4
n
的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項等比數列{an}的前n項和為Sn,若S3=3,S9-S6=12,則S6=( 。
A、9
B、
21
2
C、18
D、39

查看答案和解析>>

同步練習冊答案