tan20°tan(-50°)-1
tan20°-tan50°
=(  )
A、-
3
B、
3
C、-
3
3
D、
3
3
分析:根據(jù)兩角差的正切公式tan(α-β)=
tanα-tanβ
1-tanαtanβ
變形求解即可.
解答:解:原式=
tan20°tan50°+1
tan50°-tan20°
=
1
tan(50°-20°)
=
1
tan30°
=
3

故選B
點(diǎn)評:考查學(xué)生靈活運(yùn)用兩角和與差正切函數(shù)公式的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個恒等式中猜想得到的一個結(jié)論為
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan13°tan35°+tan35°tan42°+tan42°tan13°=1;
③tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1
④tan(-160)°tan(-22)°+tan(-22)°tan272°+tan272°tan(-160)°=1
一般地,若tanα,tanβ,tanγ都有意義,你從這四個恒等式中猜想得到的一個結(jié)論為
當(dāng)α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求值:64
1
3
-(-
2
3
)0+
3125
+lg2+lg50+21+log23
;
(2)求值:
tan80°-tan20°+tan(-60°)
tan80°tan20°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求值:64
1
3
-(-
2
3
)0+
3125
+lg2+lg50+21+log23
;
(2)求值:
tan80°-tan20°+tan(-60°)
tan80°tan20°

查看答案和解析>>

同步練習(xí)冊答案