(本題滿分12分)已知函數(shù)
(1)若的單調(diào)區(qū)間;
(2)若函數(shù)存在極值,且所有極值之和大于,求a的取值范圍。
(1)的遞減區(qū)間是,無(wú)遞增區(qū)間;(2).
解析試題分析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/64/e/slzij4.png" style="vertical-align:middle;" />
時(shí)對(duì)恒成立,所以的遞減區(qū)間是,無(wú)遞增區(qū)間
(2)
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/80/c/1ldl93.png" style="vertical-align:middle;" />存在極值,所以在上有根即方程
在上有根.
記方程的兩根為由韋達(dá)定理,所以方程的根必為兩不等正根。
所以滿足方程判別式大于零
故所求取值范圍為
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(2)通過(guò)研究函數(shù)的極值情況,確定得到含a的方程,利用方程有解,求得取值范圍。涉及對(duì)數(shù)函數(shù),要特別注意函數(shù)的定義域。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f9/6/1ip1x2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知函數(shù)f (x)=-ax3+x2+(a-1)x- (x>0),(aÎR).
(Ⅰ)當(dāng)0<a<時(shí),討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值; (2)問(wèn)a為何值時(shí),函數(shù)的最小值是-4。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com