(本小題滿(mǎn)分10分)如圖,橢圓C:的焦距為2,離心率為。
(1)求橢圓C的方程
(2)設(shè)是過(guò)原點(diǎn)的直線(xiàn),是與垂直相交于P點(diǎn)且與橢圓相交于A、B兩點(diǎn)的直線(xiàn),,是否存在上述直線(xiàn)使成立?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由。

(1)
(2)不存在直線(xiàn)使成立
(1)由2c=2知c=1

(2)設(shè)
假設(shè)使成立的直線(xiàn)存在
1)當(dāng)垂直于x軸時(shí)由


不存在直線(xiàn)使成立
2)當(dāng)不垂直于x軸時(shí),設(shè)
則由




代入上式并化簡(jiǎn)的,此方程無(wú)解
故此時(shí)直線(xiàn)不存在
綜上所訴,不存在直線(xiàn)使成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線(xiàn)交橢圓于不同的兩點(diǎn)
(Ⅰ)求橢圓的方程
(Ⅱ)若坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知橢圓C:,兩個(gè)焦點(diǎn)分別為、,斜率為k的直線(xiàn)過(guò)右焦點(diǎn)且與橢圓交于A、B兩點(diǎn),設(shè)與y軸交點(diǎn)為P,線(xiàn)段的中點(diǎn)恰為B。
(1)若,求橢圓C的離心率的取值范圍。
(2)若,A、B到右準(zhǔn)線(xiàn)距離之和為,求橢圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P (4,4),圓C: 與橢圓E:的一個(gè)公共點(diǎn)為A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),直線(xiàn)與圓C相切。
(1)求m的值與橢圓E的方程;
(2)設(shè)D為直線(xiàn)PF1與圓C 的切點(diǎn),在橢圓E上是否存在點(diǎn)Q ,使△PDQ是以PD為底的等腰三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且長(zhǎng)軸長(zhǎng)為12,離心率為,則橢圓方程
A.+="1"B.+="1"C.+="1"D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的長(zhǎng)軸為為短軸一端點(diǎn),若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓+=1,過(guò)橢圓的右焦點(diǎn)的直線(xiàn)交橢圓于AB兩點(diǎn),交y軸于P點(diǎn),設(shè)=λ1,=λ2,則λ1λ2的值為                                               
A.-           B.-             C.                D.

查看答案和解析>>

同步練習(xí)冊(cè)答案