【題目】已知集合A={x|x2+x+p=0}.
(Ⅰ)若A=,求實數(shù)p的取值范圍;
(Ⅱ)若A中的元素均為負數(shù),求實數(shù)p的取值范圍.

【答案】解:(Ⅰ)∵A=,
∴△=1﹣4p<0,
即p>
故實數(shù)p的取值范圍為(,+∞);
(Ⅱ)由題意得,
,
解得,0<p≤,
故實數(shù)p的取值范圍是(0,].
【解析】(Ⅰ)由題意知△=1﹣4p<0,從而解得;
(Ⅱ)由題意得 , 從而解得.
【考點精析】解答此題的關鍵在于理解集合的表示方法-特定字母法的相關知識,掌握①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點M、N分別是面對角線A1B與B1D1的中點,設 = = , =

(1)以{ , }為基底,表示向量
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點.以下四個結論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結論的序號為
(注:把你認為正確的結論序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第二十九屆夏季奧林匹克運動會將于2008年8月8日在北京舉行,若集合A={參加北京奧運會比賽的運動員},集合B={參加北京奧運會比賽的男運動員}.集合C={參加北京奧運會比賽的女運動員},則下列關系正確的是(  )
A.AB
B.BC
C.A∩B=C
D.B∪C=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集為實數(shù)集R.
(1)若m=5,求A∪B,(RA)∩B;
(2)若A∩B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設,若對, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中 是自然對數(shù)的底數(shù).

(1)當時,求曲線處的切線方程;

2求函數(shù)的單調(diào)減區(qū)間;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解關于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

同步練習冊答案