【題目】已知數(shù)列{an]的前n項和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明: +… (n∈N*)
【答案】解:(Ⅰ)∵Sn=2an﹣n(n∈N+),
∴Sn﹣1=2an﹣1﹣n+1=0(n≥2),
兩式相減得:an=2an﹣1+1,
變形可得:an+1=2(an﹣1+1),
又∵a1=2a1﹣1,即a1=1,
∴數(shù)列{an+1}是首項為2、公比為2的等比數(shù)列,
∴an+1=22n﹣1=2n,an=2n﹣1.
(Ⅱ)由 ,(k=1,2,…n),
∴ = ,
由 = ﹣ ,(k=1,2,…n),
得 ﹣ = ,
綜上, +… (n∈N*)
【解析】(Ⅰ)通過Sn=2an﹣n(n∈N+)與Sn﹣1=2an﹣1﹣(n﹣1)(n≥2)作差、變形可知an+1=2(an﹣1+1),進而計算即得結論.(Ⅱ)利用 ,(k=1,2,…n), = ﹣ (k=1,2,…n),可證明, +… (n∈N*).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為 .
(Ⅰ)求 的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,函數(shù) , .
(1)若 的最小值為-1,求實數(shù) 的值;
(2)是否存在實數(shù) ,使函數(shù) , 有四個不同的零點?若存在,求出 的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 , 是平面 的一組基底,則能作為平面 的一組基底的是( )
A. ﹣ , ﹣
B. +2 , +
C.2 ﹣3 ,6 ﹣4
D. + , ﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的上頂點M與左、右焦點F1、F2構成三角形MF1F2面積為 ,又橢圓C的離心率為 .
(1)求橢圓C的方程;
(2)橢圓C的下頂點為N,過點T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點.若△TMN的面積是△TEF的面積的k倍,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點,且 ,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com