設(shè)函數(shù)f(x)=的最大值為M,最小值為N,那么M+N= _________ 
4021

試題分析:根據(jù)題意,由于函數(shù)f(x)=,
那么可知,
則根據(jù)解析式可知哈數(shù)圖像關(guān)于(0,2011)對稱 ,那么可知M+N=4021.
點評:解決的關(guān)鍵是對于原函數(shù)式的變形來的到函數(shù)的性質(zhì),進而分析得到最值。屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),的一個極值點.
(1)求的單調(diào)遞增區(qū)間;
(2)若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列整數(shù)中,小于-3的整數(shù)是
A.-4  B.-2  C.0   D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是定義在R上的偶函數(shù),在區(qū)間上為增函數(shù),且,則不等式的解集為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,當時,恒有
的解析式;
的解集為空集,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為,建在C處的垃圾處理廠對城A和城B的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當垃圾處理廠建在AB的中點時,對A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最。咳舸嬖,求出該點到城A的距離;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)(常數(shù))在處取得極大值M=0.
(Ⅰ)求的值;
(Ⅱ)當,方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一中型號的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設(shè)完成A 型零件加工所需時間為小時,寫出的解析式;
(2)為了在最短時間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2+1,值域為{3,9}的“孿生函數(shù)”共有(  )
A.10個B.9個
C.8個D.7個

查看答案和解析>>

同步練習冊答案