四棱錐S-ABCD中,底面ABCD為平行四邊形,側面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,,
(Ⅰ)證明:SA⊥BC;
(Ⅱ)求直線SD與平面SBC所成角的大小.

【答案】分析:解法一:(1)作SO⊥BC,垂足為O,連接AO,說明SO⊥底面ABCD.利用三垂線定理,得SA⊥BC.
(Ⅱ)由(Ⅰ)知SA⊥BC,設AD∥BC,連接SE.說明∠ESD為直線SD與平面SBC所成的角,通過,求出直線SD與平面SBC所成的角為
解法二:(Ⅰ)作SO⊥BC,垂足為O,連接AO,以O為坐標原點,OA為x軸正向,建立直角坐標系O-xyz,通過證明,推出SA⊥BC.
(Ⅱ).的夾角記為α,SD與平面ABC所成的角記為β,因為為平面SBC的法向量,利用α與β互余.通過,,推出直線SD與平面SBC所成的角為
解答:解法一:
(1)作SO⊥BC,垂足為O,連接AO,
由側面SBC⊥底面ABCD,得SO⊥底面ABCD.
因為SA=SB,所以AO=BO,
又∠ABC=45°,故△AOB為等腰直角三角形,AO⊥BO,
由三垂線定理,得SA⊥BC.

(Ⅱ)由(Ⅰ)知SA⊥BC,
依題設AD∥BC,
故SA⊥AD,由,
,作DE⊥BC,垂足為E,
則DE⊥平面SBC,連接SE.∠ESD為直線SD與平面SBC所成的角.
所以,直線SD與平面SBC所成的角為

解法二:
(Ⅰ)作SO⊥BC,垂足為O,連接AO,
由側面SBC⊥底面ABCD,得SO⊥平面ABCD.
因為SA=SB,所以AO=BO.
又∠ABC=45°,△AOB為等腰直角三角形,AO⊥OB.
如圖,以O為坐標原點,OA為x軸正向,建立直角坐標系O-xyz,
因為,
,所以,.S(0,0,1),,,,所以SA⊥BC.

(Ⅱ),.的夾角記為α,SD與平面ABC所成的角記為β,因為為平面SBC的法向量,所以α與β互余.,,
所以,直線SD與平面SBC所成的角為
點評:本小題主要考查空間線面關系、直線與平面所成的角等知識,考查數(shù)形結合、化歸與轉化的數(shù)學思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=
2
,DC=SD=2,點M在側棱SC上,∠ABM=60°
(I)證明:M是側棱SC的中點;
(2)求二面角S-AM-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,SA⊥平面ABCD,AB=2,AD=1,SB=
7
,∠BAD=120°,E在棱SD上,且SE=3ED.
(I)求證:SD⊥平面AEC;
(II)求直線AD與平面SCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐S-ABCD中,SA=AB=2,SB=SD=2
2

(1)證明:BD⊥平面SAC;
(2)問:側棱SD上是否存在點E,使得SB∥平面ACE?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,SD=AD,DF⊥SB垂足為F,E是SD的中點.
(Ⅰ)證明:SA∥平面BDE;
(Ⅱ)證明:平面SBD⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD中.ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD.E為CD上一點,且CE=3DE.
(1)求證:AE⊥平面SBD;
(2)M、N分別在線段CD、SB上的點,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,確定M、N的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案