【題目】由我國引領(lǐng)的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對GDP增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動國民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測.結(jié)合圖,下列說法不正確的是( )
A.5G的發(fā)展帶動今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運營商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,以x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)已知定點,直線與曲線C分別交于P、Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級開設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機(jī)抽取了5名學(xué)生校本課程的學(xué)分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的方差,計算兩個班學(xué)分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2019年新研發(fā)了一種設(shè)備,為測試其性能,從設(shè)備生產(chǎn)的流水線上隨機(jī)抽取30件零件作為樣本,測量其重量后,得到下表的相關(guān)數(shù)據(jù).為了評判某臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其重量為,并根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的概率):①;②;評判規(guī)則為:若同時滿足上述兩個不等式,則設(shè)備等級為;僅滿足其中一個,則等級為;若全部不滿足,則等級為.
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
重量/ | 18 | 19 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 30 |
件數(shù)/個 | 1 | 1 | 2 | 2 | 6 | 8 | 5 | 2 | 1 | 2 |
(1)試判斷設(shè)備的性能等級;
(2)若或的零件認(rèn)為是次品,其余為非次品.設(shè)30個樣本中次品個數(shù)為,現(xiàn)需要從中取出全部次品和2件非次品形成個小樣本,該公司從該小樣本中機(jī)抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C2的極坐標(biāo)方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)記,試判斷函數(shù)的極值點的情況;
(2)若有且僅有兩個整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形和梯形所在平面互相垂直,,,.
(1)求證:平面;
(2)當(dāng)的長為何值時,直線與平面所成角的大小為45°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標(biāo)之積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com