下列結(jié)論錯(cuò)誤的是( )
A.命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題
B.命題p:?x∈R,2x>0,命題¬p:?x∈R,2x≤0
C.若p∨q為假命題,則p、q均為假命題
D.“若am2<bm2,則a<b”的逆命題為真命題
【答案】分析:對(duì)于A,命題“若p,則q”的逆否命題是“若¬q,則¬p”;B:存在性命題”的否定一定是“全稱命題”;C:只有命題p和命題q全是假命題,則p∨q為假;D;寫出原命題的逆命題再進(jìn)行判斷.
解答:解:因?yàn)槊}“若p,則q”的逆否命題是命題“若¬q,則¬p”,所以命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題;故A正確.
∵“全稱命題”的否定一定是“存在性命題”,
∴命題p:?x∈R,2x>0,的否定是:
?x∈R,2x≤0.故B正確.
若p∨q為假命題,則p、q均為假命題,否則p∨q為真,故C正確.
“若am2<bm2,則a<b”的逆命題為“若a<b,則am2<bm2”,當(dāng)m=0時(shí)不正確,故D錯(cuò)誤.
故選D.
點(diǎn)評(píng):此題注重對(duì)基礎(chǔ)知識(shí)的考查,特別是四種命題之間的真假關(guān)系,復(fù)合命題的真假關(guān)系,特稱命題與全稱命題的真假及否定,是學(xué)生易錯(cuò)點(diǎn).