(本題滿(mǎn)分16分)
如圖,在四棱錐中,底面是矩形.已知
(1)證明平面;
(2)求異面直線(xiàn)所成的角的大;
(3)求二面角的大小.
解:(1)證明:在中,由題設(shè)可得

于是.在矩形中,.又,
所以平面

(2)解:由題設(shè),,所以(或其補(bǔ)角)是異面直線(xiàn)所成的角.
中,由余弦定理得
由(1)知平面,平面,
所以,因而,于是是直角三角形,故
所以異面直線(xiàn)所成的角的大小為
(3)解:過(guò)點(diǎn)P做于H,過(guò)點(diǎn)H做于E,連結(jié)PE
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200143802416.png" style="vertical-align:middle;" />平面平面,所以.又,
因而平面,故HE為PE再平面ABCD內(nèi)的射影.由三垂線(xiàn)定理可知,
,從而是二面角的平面角。
由題設(shè)可得,

于是在中,
所以二面角的大小為
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
如圖,正方形所在的平面與平面垂直, 的交點(diǎn),
,
(I)求證:                      
(II)求直線(xiàn)與平面所成的角的大小;
(III)求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)a ⊥平面,b∥,則a與b的關(guān)系為()
A.a(chǎn)⊥b且a與b相交B.a(chǎn)⊥b且a與b不相交
C.a(chǎn)⊥bD.a(chǎn) 與b不一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,已知正三棱柱的各棱長(zhǎng)都是4, 的中點(diǎn),動(dòng)點(diǎn)在側(cè)棱上,且不與點(diǎn)重合.
(I)當(dāng)時(shí),求證:
(II)設(shè)二面角的大小為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,在三棱錐ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O為AC中點(diǎn)。
(1)求直線(xiàn)A1C與平面A1AB所成角的正弦值;
(2)在BC1上是否存在一點(diǎn)E,使得OE∥平面A1AB,若不存在,說(shuō)明理由;若存在,確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在空間,下列命題正確的是( 。
A.若直線(xiàn)∥平面,直線(xiàn),則;
 
B.若,, 平面,則;
 
C.若兩平面=,, ,則
D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求點(diǎn)E到平面ACD的距離;
(III)求二面角A—CD—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)是以為周期的奇函數(shù),,且,則_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.如圖,由編號(hào),…,,…()的圓柱自下而上組成.其中每一個(gè)圓柱的高與其底面圓的直徑相等,且對(duì)于任意兩個(gè)相鄰圓柱,上面圓柱的高是下面圓柱的高的一半.若編號(hào)1的圓柱的高為,則所有圓柱的體積的和為_(kāi)______________(結(jié)果保留).

查看答案和解析>>

同步練習(xí)冊(cè)答案