15.已知函數(shù)f(x)=x2-ax+lnx(a∈R).
(1)若函數(shù)f(x)在x=1處取得極小值,求函數(shù)f(x)的極大值;
(2)若x∈(0,e]時(shí),函數(shù)f(x)≤1恒成立,求a的取值范圍.

分析 (1)由f(x)=x2-ax+lnx(a∈R)在x=1時(shí)取得極值,可得f′(1)=0,解出a即可得出.
(2)x∈(0,e]時(shí),函數(shù)f(x)≤1恒成立,可得a≥x+$\frac{lnx}{x}$-$\frac{1}{x}$=h(x).利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.

解答 解:(1)∵f(x)=x2-ax+lnx(a∈R)在x=1時(shí)取得極值,f′(x)=2x-a+$\frac{1}{x}$,
∴f′(1)=0,
∴2-a+1=0,
解得a=3,經(jīng)過(guò)驗(yàn)證滿足條件.
(2)∵x∈(0,e]時(shí),函數(shù)f(x)≤1恒成立,∴a≥x+$\frac{lnx}{x}$-$\frac{1}{x}$=h(x).
h′(x)=1+$\frac{1}{{x}^{2}}$+$\frac{1-lnx}{{x}^{2}}$=$\frac{{x}^{2}+2-lnx}{{x}^{2}}$>0,
∴函數(shù)h(x)在x∈(0,e]單調(diào)遞增,
∴x=e時(shí),h(x)取得最大值,h(e)=e+$\frac{1}{e}$-$\frac{1}{e}$=e.
∴a≥e.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值,考查了等價(jià)轉(zhuǎn)化方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知二階矩陣M的屬于特征值-1的一個(gè)特征向量為$[\begin{array}{l}{1}\\{-3}\end{array}]$,屬于特征值3的一個(gè)特征向量為$[\begin{array}{l}{1}\\{1}\end{array}]$.
(1)求矩陣M;
(2)求直線l:y=2x-1在M作用下得到的新的直線l′方程;
(3)已知向量$\overrightarrow β=[\begin{array}{l}4\\ 0\end{array}]$,求${M^5}•\overrightarrow β$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=lnx-($\frac{1}{2}$)x+1,則不等式f(2x-3)<$\frac{1}{2}$的解集為( 。
A.{x|{$\frac{3}{2}$<x<2}B.{x|${\frac{1}{2}$<x<2}C.{x|x<1}D.{x|-1<x<$\frac{3}{2}}\right.$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ax-lnx在($\frac{1}{2}$,+∞)上單調(diào)遞增,則a的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且$PD=CD=\frac{{\sqrt{2}}}{2}BC$,過(guò)棱PC的中點(diǎn)AB1⊥PQ,作EF⊥PB交PB于點(diǎn)PQD,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.
(2)求異面直線與BE所成角的余弦值及二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,求直線CD與平面PAB所成角的大;
(2)設(shè)PD=a,且二面角A-PB-C的大小為$\frac{π}{3}$,求AD長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(-2)×f(-2),b=f(1),c=3×f(3),則a,b,c的關(guān)系大小是( 。
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,且過(guò)點(diǎn)A(0,1),離心率為$\frac{{\sqrt{3}}}{2}$,設(shè)直線方程為y=x+m.
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程
(Ⅱ)當(dāng)m為何值時(shí),直線與橢圓有公共點(diǎn)?
(Ⅲ)若直線被橢圓截得的弦長(zhǎng)為$\frac{2\sqrt{10}}{5}$,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.過(guò)點(diǎn)(2,0)引直線l與曲線$y=\sqrt{2-{x^2}}$相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大值時(shí),直線l的斜率等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案