等腰直角三角形ABC中,AB=BC=1,M為AC中點(diǎn),沿BM把它折成二面角,折后A與C的距離為1,則二面角C-BM-A的大小為


  1. A.
    30°
  2. B.
    60°
  3. C.
    90°
  4. D.
    120°
C
分析:在等腰直角三角形ABC中,由AB=BC=1,M為AC中點(diǎn),知AM=CM=BM=,AM⊥BM,CM⊥BM,所以沿BM把它折成二面角后,∠AMC就是二面角的平面角,由此能求出二面角C-BM-A的大小.
解答:在等腰直角三角形ABC中,
∵AB=BC=1,M為AC中點(diǎn),
∴AM=CM=BM=,AM⊥BM,CM⊥BM,
所以沿BM把它折成二面角后,∠AMC就是二面角的平面角.
在△AMC中,∵AM=CM=,AC=1,
由余弦定理,知cos∠AMC==0,
∴∠AMC=90°.
故選C.
點(diǎn)評(píng):本題考查二面角的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意折疊問(wèn)題的合理轉(zhuǎn)化,注意培養(yǎng)空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等腰直角三角形ABC中,C=90°,直角邊BC在直線2x+3y-6=0上,頂點(diǎn)A的坐標(biāo)是(5,4),求邊AB 和AC所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等腰直角三角形ABC的斜邊所在的直線是3x-y+2=0,直角頂點(diǎn)是C(3,-2),則兩條直角邊AC,BC的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•紅橋區(qū)二模)已知橢圓:
x2
a2
+
y2
b2
=l(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為B(0,1),若該橢圓的離心率等于
3
2

(1)求橢圓的方程.
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍;
(3)以B為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形ABC,判斷這樣的三角形存在嗎?若存在,有幾個(gè)?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等腰直角三角形ABC中,過(guò)直角頂點(diǎn)C在∠ACB內(nèi)部任作一射線CM,與線段AB交于點(diǎn)M,求AM<AC的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等腰直角三角形ABC,E、F分別是斜邊BC的三等分點(diǎn),則tan∠EAF=( 。
A、
3
3
B、
3
C、
4
3
D、
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案