19.曲線y=ex,直線x=0,x=$\frac{1}{2}$與x軸圍成的平面圖形繞x軸旋轉(zhuǎn)一周得到旋轉(zhuǎn)體的體積是( 。
A.$\frac{(e-1)π}{2}$B.$\frac{(e-1){π}}{3}$C.$\frac{(e-1)π}{4}$D.$\frac{(e-1)π}{5}$

分析 根據(jù)題意,這旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積應(yīng)該用定積分來求.此幾何體的體積可以看作是π${∫}_{0}^{\frac{1}{2}}$e2xdx,求出這個定積分的值,即求得題中的體積.

解答 解:由題意幾何體的體積等于V=π${∫}_{0}^{\frac{1}{2}}$e2xdx=π×$\frac{1}{2}$e2x${|}_{0}^{\frac{1}{2}}$=$\frac{(e-1)π}{2}$.
故選:A.

點評 本題考查用定積分求簡單幾何體的體積,屬于基礎(chǔ)題.利用定積分求旋轉(zhuǎn)體的體積,求解的關(guān)鍵是找出被積函數(shù)和相應(yīng)的積分區(qū)間,準確利用公式進行計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某旅游景點,為方便游客游玩,設(shè)置自行車騎游出租點,收費標準如下:租車時間不超過2小時收費10元,超過2小時的部分按每小時10元收取(不足一小時按一小時計算).現(xiàn)甲、乙兩人獨立來該租車點租車騎游,各租車一次.設(shè)甲、乙不超過兩小時還車的概率分別為$\frac{1}{3}$,$\frac{1}{2}$;2小時以上且不超過3小時還車的概率分別為$\frac{1}{2}$,$\frac{1}{3}$,且兩人租車的時間都不超過4小時.
(Ⅰ)求甲、乙兩人所付租車費用相同的概率;
(Ⅱ)設(shè)甲、乙兩人所付的租車費用之和為隨機變量ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某商場組織購物抽獎活動,現(xiàn)場準備了兩個裝有6個球的箱子,小球除顏色外完全相同,A箱中放有3個紅球、2個白球、1個黃球,B箱中放有紅球、白球和黃球各2個,顧客購物一次可分別從A、B兩箱中任。ㄓ蟹呕兀┮磺,當兩球同色即中獎,若取出兩個黃球得3分,取出兩個白球得2分,取出兩個紅球得1分,當兩球異色時未中獎得0分,商場根據(jù)顧客所得分數(shù)多少給予不同獎勵.
(Ⅰ)求某顧客購物一次中獎的概率;
(Ⅱ)某顧客先后2次參與購物抽獎,其得分之和為ξ,求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知各項都是正數(shù)的數(shù)列{an}滿足:a1=1,$\frac{{1-a_{n+1}^2}}{1+a_n^2}=\frac{{{a_{n+1}}}}{a_n}$.
(Ⅰ)求a2,a3,a4的值,并猜想數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,${b_n}=\frac{1}{S_n^2}(n∈{N^*})$,若A=bn+1+bn+2+…+b2n,B=cosbn+1•cosbn+2•…cosb2n,求證:$\frac{A}{B}<\frac{ln4}{{\sqrt{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,將函數(shù)g(x)=f(x)-x-1的零點按從小到大的順序排列,構(gòu)成數(shù)列{an},則該數(shù)列的通項公式為( 。
A.an=n-2B.an=nC.an=n(n-1)D.an=2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,若$\frac{{a}^{2}}{^{2}}$=$\frac{sinAcosB}{cosAsinB}$,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=|tanx|的圖象關(guān)于x=$\frac{kπ}{2}$,k∈z對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知cosα=$\frac{1}{17}$,cos(α+β)=-$\frac{47}{51}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,則cosβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知m,n,i,j均為正整數(shù),記ai,j為矩陣${A_{n×m}}=({\begin{array}{l}1&{{a_{1,2}}}&…&{{a_{1,m}}}\\ 2&{{a_{2,2}}}&…&{{a_{2,m}}}\\…&…&…&…\\{{a_{n,1}}}&{{a_{n,2}}}&…&{{a_{n,m}}}\end{array}})$中第i行、第j列的元素,且ai,j+1=ai,j+1,2ai+2,j=ai+1,j+ai,j(其中i≤n-2,j≤m-2);給出結(jié)論:①a5,6=$\frac{13}{4}$;②a2,1+a2,2+…+a2,m=2m;③${a_{n+1,m}}={a_{n,m}}+{({-\frac{1}{2}})^n}$④若m為常數(shù),則$\lim_{n→∞}{a_{n,m}}=\frac{2+3m}{3}$.其中正確的個數(shù)是(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案