20.圓x2+y2-x+y-1=0的圓心坐標(biāo)是($\frac{1}{2}$,-$\frac{1}{2}$).

分析 把圓的一般方程化為標(biāo)準(zhǔn)方程,圓的標(biāo)準(zhǔn)方程的特征,求出圓心的坐標(biāo).

解答 解:圓x2+y2-x+y-1=0,即 (x-$\frac{1}{2}$)2+(y+$\frac{1}{2}$)2 =$\frac{3}{2}$,故該圓的圓心為($\frac{1}{2}$,-$\frac{1}{2}$),
故答案為:($\frac{1}{2}$,-$\frac{1}{2}$).

點(diǎn)評(píng) 本題主要考查把圓的一般方程化為標(biāo)準(zhǔn)方程,圓的標(biāo)準(zhǔn)方程的特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)g(x)=x2f(x),若函數(shù)f(x)為定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),對(duì)任意實(shí)數(shù)x滿足x2f′(x)>2xf(-x),則不等式g(x)<g(1-3x)的解集是( 。
A.$({\frac{1}{4},+∞})$B.(0,$\frac{1}{4}$)C.$({-∞,\frac{1}{4}})$D.$({-∞,\frac{1}{4}})∪({\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過點(diǎn)(1,5),
(1)求實(shí)數(shù)m的值,并判斷函數(shù)f(x)的奇偶性;
(2)用單調(diào)性的定義證明函數(shù)f(x)在[1,2]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四邊形ABCD為平行四邊形,點(diǎn)A的坐標(biāo)為(-1,2),點(diǎn)C在第二象限,$\overrightarrow{AB}=({2,2}),且\overrightarrow{AB}與\overrightarrow{AC}$的夾角為$\frac{π}{4},\overrightarrow{AB}•\overrightarrow{AC}$=2.
(I)求點(diǎn)D的坐標(biāo);
(II)當(dāng)m為何值時(shí),$\overrightarrow{AC}+m\overrightarrow{AB}與\overrightarrow{BC}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù)(如[-1.5]=-2,[0]=0,[2.3]=2),則[log2$\frac{1}{4}$]+[log2$\frac{1}{3}$]+[log21]+[log23]+[log24]的值為( 。
A.0B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\frac{π}{4}$<α<$\frac{π}{2}$,試比較角α的正弦線、余弦線和正切線的長(zhǎng)度,如果$\frac{π}{2}$<α<$\frac{3π}{4}$.上述長(zhǎng)度關(guān)系又如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=x2m+1在區(qū)間(0,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線y=1與直線y=$\sqrt{3}$x+3的夾角為( 。
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點(diǎn)的直角坐標(biāo)為(-1,1),(1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案