18.函數(shù)y=sin2x-2cos2x化成正弦型函數(shù)為y=$\sqrt{5}$sin(2x-θ).其中tanθ=2.

分析 直接利用輔助角公式化簡(jiǎn)求解即可.

解答 解:函數(shù)y=sin2x-2cos2x=$\sqrt{5}$$(\frac{\sqrt{5}}{5}sin2x-\frac{2\sqrt{5}}{5}cos2x)$=$\sqrt{5}$sin(2x-θ).其中tanθ=2.
故答案為:y=$\sqrt{5}$sin(2x-θ).其中tanθ=2.

點(diǎn)評(píng) 本題考查兩角和的正弦函數(shù),基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.畫(huà)出不等式組$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$所表示的區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.${∫}_{2}^{t}$(x-2)4dx的展開(kāi)式中t2的系數(shù)是-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四棱錐P-ABCD中,△PAB是正三角形,四邊形ABCD是矩形,且面PAB⊥面ABCD,PA=1,PC=2.
(Ⅰ) 若點(diǎn)E是PC的中點(diǎn),求證:PA∥面BDE;
(Ⅱ) 若點(diǎn)F在線段PA上,且$PF=\frac{1}{3}PA$,求三棱錐B-AFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若x∈[-2,2],不等式x2+ax+3≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)公差為d(d≠0)的等差數(shù)列{an}與公比為q(q>0)的等比數(shù)列{bn}有如下關(guān)系:a1=b1=2,a3=b3,ab3=5.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記A={a1,a2,a3,…,a20},B={b1,b2,b3,…,b20},C=A∪B,求集合C中的各元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在銳角△ABC中,已知a+b=2$\sqrt{3}$,ab=2,△ABC的面積為$\frac{\sqrt{3}}{2}$,求角C與邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù) a=${∫}_{2}^{3}$cosxdx,b=log2e,c=($\frac{1}{3}$)0.4,則a,b,c的大小順序?yàn)椋ā 。?table class="qanwser">A.c<a<bB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊(cè)答案