9.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{2π+1}{3}$B.$\frac{2π+3}{3}$C.$\frac{4π+1}{3}$D.$\frac{4π+3}{3}$

分析 根據(jù)幾何體的三視圖,得出該幾何體是半球體與三棱錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體的下部是半球體,上部是三棱錐,
且半球體的半徑為1,三棱錐的底面為直角三角形,高為1;
所以該幾何體的體積為
V=$\frac{1}{2}$×$\frac{4}{3}$π×13+$\frac{1}{3}$×$\frac{1}{2}$×2×1×1=$\frac{2π+1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了空間幾何體三視圖的應(yīng)用問題,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)O為△ABC的外心,且$\overrightarrow{OA}+\overrightarrow{OB}+\sqrt{3}\overrightarrow{OC}=\overrightarrow 0$,則△ABC的內(nèi)角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A(1,2,3)、B(2,1,2)、C(1,1,2),O為坐標(biāo)原點(diǎn),點(diǎn)D在直線OC上運(yùn)動(dòng),則當(dāng)$\overrightarrow{DA}$•$\overrightarrow{DB}$取最小值時(shí),點(diǎn)D的坐標(biāo)為( 。
A.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{4}{3}$)B.($\frac{8}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)C.($\frac{4}{3}$,$\frac{4}{3}$,$\frac{8}{3}$)D.($\frac{8}{3}$,$\frac{8}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{1}{3x-1}$,求f(-2),f(0),f($\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若以橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸端點(diǎn)B(0,1)為直角頂點(diǎn)作橢圓內(nèi)接等腰直角三角形,問這樣的三角形能不能做?若能做,可做多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,ABCD是正方形,SA⊥平面ABCD,BK⊥SC于點(diǎn)K,連接DK,求證:
(1)平面SBC⊥平面KBD;
(2)平面SBC不垂直于平面SDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=$\frac{1}{2}$(cosx-sinx)(cosx+sinx)-2asinx+b(a>0).
(1)若b=1,且對(duì)任意x∈(0,$\frac{π}{6}$),恒有f(x)>0,求a的取值范圍.
(2)若f(x)的最大值為1,最小值為-4,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算下列定積分:
${∫}_{0}^{1}$$\root{3}{x}$(1+$\sqrt{x}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一條直線不與坐標(biāo)軸平行或重合,則它的方程( 。
A.可以寫成兩點(diǎn)式或截距式B.可以寫成兩點(diǎn)式或斜截式或點(diǎn)斜式
C.可以寫成點(diǎn)斜式或截距式D.可以寫成兩點(diǎn)式或截距式或點(diǎn)斜式

查看答案和解析>>

同步練習(xí)冊(cè)答案