A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 設(shè)△ABC的外接圓的半徑為R,由$\overrightarrow{OA}+\overrightarrow{OB}+\sqrt{3}\overrightarrow{OC}=\overrightarrow 0$,化為$\overrightarrow{OA}+\overrightarrow{OB}$=-$\sqrt{3}\overrightarrow{OC}$,兩邊作數(shù)量積運算可得:$(\overrightarrow{OA}+\overrightarrow{OB})^{2}$=$3{\overrightarrow{OC}}^{2}$,化簡即可得出.
解答 解:設(shè)△ABC的外接圓的半徑為R,
由$\overrightarrow{OA}+\overrightarrow{OB}+\sqrt{3}\overrightarrow{OC}=\overrightarrow 0$,化為$\overrightarrow{OA}+\overrightarrow{OB}$=-$\sqrt{3}\overrightarrow{OC}$,
兩邊作數(shù)量積運算可得:$(\overrightarrow{OA}+\overrightarrow{OB})^{2}$=$3{\overrightarrow{OC}}^{2}$,
化為2R2+2R2cos∠AOB=3R2,
化為cos∠AOB=$\frac{1}{2}$,∠AOB∈(0,π),
可得∠AOB=$\frac{π}{3}$,
∴∠C=$\frac{1}{2}$∠AOB=$\frac{π}{6}$,
故選:A.
點評 本題考查了向量數(shù)量積運算性質(zhì)、圓心角與圓周角直角的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π+1}{3}$ | B. | $\frac{2π+3}{3}$ | C. | $\frac{4π+1}{3}$ | D. | $\frac{4π+3}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com