15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x≤1}\\{\frac{3}{x-1},x>1}\end{array}\right.$,則滿足f(f(a))=|2f(a)-1|的實(shí)數(shù)a的取值范圍為a≤1或a≥4.

分析 通過函數(shù)解析式,由f(f(a))=|2f(a)-1|可知f(a)≤1,分a≤1、a>1兩種情況討論即可.

解答 解:∵f(f(a))=|2f(a)-1|,
∴f(a)≤1,
下面對(duì)a與1的大小進(jìn)行討論:
①當(dāng)a≤1時(shí),1-2a≤1,
∴2a≥0,∴a∈R,
∴a≤1;
②當(dāng)a>1時(shí),$\frac{3}{a-1}$≤1,
∴a-1≥3,即a≥4,
∴a≥4;
綜上所述,a≤1或a≥4,
故答案為:a≤1或a≥4.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,考查分類討論的思想,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且sin(B-C)+cos(B+C)=0.
(1)求角C的大小;
(2)若c=$\sqrt{2}$,當(dāng)sinA+cos($\frac{7π}{12}$-B)取得最大值時(shí),求A,α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A、B、C成等差數(shù)列,b=$\sqrt{3}$,則△ABC的周長(zhǎng)的最大值為(  )
A.3$+\sqrt{3}$B.2$+\sqrt{3}$C.1$+2\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的n階導(dǎo)數(shù):
(1)y=(ax+b)n;
(2)y=ln(1+2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.方程2x+x=2,log2x+x=2,2x=log2(-x)的根分別為a,b,c,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,an+1-an=2,等比數(shù)列{bn}滿足b1=a1,b4=a4+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知函數(shù)f(x)定義在(-1,1)上,對(duì)于任意的x,y∈(-1,1),有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且當(dāng)x<0時(shí),f(x)>0;
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(-1,1)上是減函數(shù);
(3)若函數(shù)f(x)=1n$\frac{1-x}{1+x}$,證明:f(x)+f(y)=f($\frac{x+y}{1+xy}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2cos2x-1.
(Ⅰ)求函數(shù)f(x)最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[$\frac{π}{4},\frac{3π}{4}$]上的最小值和此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案