【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來自109個(gè)國家的9300余名運(yùn)動(dòng)員同臺(tái)競技.經(jīng)過激烈的角逐,獎(jiǎng)牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎(jiǎng)牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

【答案】C

【解析】

先根據(jù)分層抽樣確定中國選手的人數(shù),再利用組合數(shù)根據(jù)古典概型的概率計(jì)算公式求解即可.

解:中國和巴西獲得金牌總數(shù)為154,按照分層抽樣方法,

22名獲獎(jiǎng)代表中有中國選手19個(gè),巴西選手3個(gè),

故這3人中中國選手恰好1人的概率

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有 個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,

約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為 的人去參加

甲游戲,擲出點(diǎn)數(shù)大于 的人去參加乙游戲.

1)求這 個(gè)人中恰有 個(gè)人去參加甲游戲的概率;

2)求這 個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯

形, , , .且均為正三角形, 的中點(diǎn),

重心.

(1)求證: 平面;

(2)求異面直線的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地

區(qū)調(diào)查了500位老年人,結(jié)果如下:

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人需要志愿者提供幫助與性別有

關(guān)?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為, 的中點(diǎn), 為線段的動(dòng)點(diǎn),過的平面截該正方體所得的截面記為,則下列命題正確的序號(hào)是_________.

①當(dāng)時(shí), 的面積為;

②當(dāng)時(shí), 為六邊形;

③當(dāng)時(shí), 的交點(diǎn)滿足;

④當(dāng)時(shí), 為等腰梯形;

⑤當(dāng)時(shí), 為四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

若函數(shù)上是增函數(shù),求實(shí)數(shù)a的取值范圍;

,且對(duì)任意,,,都有,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)在線段上運(yùn)動(dòng),則下列判斷中正確的是( )

①平面平面;

平面;

③異面直線所成角的取值范圍是;

④三棱錐的體積不變.

A. ①② B. ①②④ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2求函數(shù)的單調(diào)區(qū)間;

3上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案